Together Practical Guide

Together

A Practical Guideto
Getting Started with
Together Control Center

This set of pagesisan introductory tutorial and guide for new Together users. Upon completing the tutorial, you should be familiar enough with Together to create applications
from scratch. Plan to spend several hours going through thisinitial material. For a more in-depth introduction you may want to take longer.

Contents:
o Using Together Smart Start
e Quick Tour: Navigating your way around Together

o Tutoria: Building a Together project from scratch

« Software requirements and additional resources

Using the Practical Guide

Together can be described in many ways. It is a class modeling tool, always keeping source and model diagramsin sync. It is an architectural guide, revealing the physical and
logical layout of aproject. It isthe primary communication link among analysts, designers, developers, and programmers. It is a customizable Java and C++ programming
environment, with features promoting the best practices in software development. It is an enterprise application development enabler ... and much, much more.

Together is user-friendly but feature rich. This Practical Guide is a collection of pages designed to give you a quick, working knowledge of Together. The collection is divided
into two major sections:

1. Quick Tour -- shows how to navigate your way around Together.

2. Tutorial -- shows how to construct a project from scratch.

Y ou should go through the Quick Tour first -- take advantage of the buttons. We strongly recommend that you do the exercises or at least do some significant
exploration on your own.

When you have learned how to navigate your way around Together, you're ready for the Tutorial. It is built around many steps, formatted as follows.

|Step: Something for you to do. |

Each step is followed by an explanation, with how-to snapshots and related information.

We can't begin to tell you everything about Together, but this will get you started. Y ou will discover lots of features not covered in this tutorial when you use Together for your
own work. Have fun!

Quick Tour: Navigating your way around Together

The Quick Tour shows the layout and functionality of the Together user interface. It gives insight into the way you can customize Together for your own work.
1. The Main Window

http://localhost/index.html (1 of 2) [5/3/2001 3:48:37 PM]

Together Practical Guide
2. Exploring the Explorer Pane
3. Navigating Within Together
4. Customizing via Options and Inspectors

Tutorial: Building a Together project from scratch

The Tutorial coversthe basic features of Together by leading you through the steps of creating a Java application. The Together Tutorial isin Java, although C++ programmers
could easily mimic many of the stepsin C++ instead of Java. (At most only aminimal knowledge of Javais required.)

1. Projects and Packages

Requirements and Use Case Diagrams

Business Rules and Activity Diagrams

Diagrams and Classes

Classes and Associations

Template Patterns

Refactoring with Class Patterns

Sequence Diagrams

© © N Ok wWwDN

Documentation Generation
Audits and Metrics (Together Control Center required)
. Multi-User Support and Version Control

=
©

[ERN
[N

[EnY
o

Running and Debugging Java Projects

Software requirements and additional resources

The Practical Guide requires no specia software beyond Together. Together Solo is sufficient for most of the work, athough you'll need Together Control Center for some
advanced features.

The Together product line, including Together Control Center and Together Solo can be downloaded at www.togethersoft.com. Together Control Center, the more feature-laden of
the Together products, is available for afree 15-day trial. An abbreviated version of Together Solo is available for free from www.togethercommunity.com.

Together software includes a complete set of documentation. Together users have aforum for exchanging practical information at the Together Community site,
www.togethercommunity.com.

Copyright © 2001 TogetherSoft Corporation. All rights reserved.
Last Revised: Thu, Apr 19, 2001

http://localhost/index.html (2 of 2) [5/3/2001 3:48:37 PM]

http://www.togethersoft.com/
http://www.togethersoft.com/
http://www.togethersoft.com/

Together Quick Tour -- Part 1

Together Quick Tour
Part 1: The Main Window

The Quick Tour navigates through some of the basic features of Together. Y ou will start the tour by taking a good look at Together's Main window. The CashSales sample project will form the basis for many of the tour
discussions.

Contents
« Opening a project
« Understanding the Main window organization
» Exploring the Main menu
« Exploring the Main toolbar and status bar
« Accessing speedmenus and inspectors

Opening a project

When you open Together for the first time, it displays an "about" splash screen in the middle of its window. Y ou'll need to close the splash screen before Together will respond to any commands. Click the X in the upper right
corner.

R
‘ﬂjq
T

Together..... ...sucoposrurem

Information < Order _~ Contacts " Web Pages -~ Notices

Gefting Help

® E-mgil guestions aor comments to suppartEtogethersoft com
* izt TogetherSoft at vy togethersoft com

System Information

® Together Control Center

® Version: 5.0

® Together Build: 1340 buit an Apr 10, 2001
® M Version: 1.3.0

* i Information: mixed mode =
* M Home: ldkdbin]
* %M Yendar: Sun Microzsystems Inc.

Together works almost entirely within the context of projects. When you open Together without a project, the only information Together showsisin its Explorer pane on the | eft side of the Main window.

http://localhost/1gettoknow.html (1 of 6) [5/3/2001 3:48:41 PM]

Together Quick Tour -- Part 1
The Explorer pane displays both physical and logical organizations of files. Y ou can useit to navigate within the physical directory of the system or within a project.

The Explorer paneis organized by tabs. The Directory tab (Ieft most tab) shows both the physical directory of your system and the organization of the Together home
folder with respect to projects.

CashSalesis a Together sample project that models a simple retail store cash transaction. Y ou can select the project in the Directory by first expanding Samples, then
java, then CashSales.

The Directory displays an icon beside afile name to indicate its type with respect to Together.

files that can be opened with Together's editor
Together project files
[other types of filesthat cannot be opened in the editor

Double-click on [F] CashSales.tpr to open the CashSales project.

w04 (S

= & Directory
[Currert
[= Ch

Project

= =] Samples

]

B = java

SRS

HEHEEE

o |

CashZales

F data_management

] problem_domain

El Reguiremerts

El zerver

] user_interface

= util

o Architecture View diClass
Eashales tpr

[cashSalest

$] Component dfComponent
demoguide Html

o Object Wiew diClass

o OpenFirst dfClass

D OpenFirst dfClass wmf

(7 Pos System diDeployment
ProblemDomain.difackage
D ProblemDomain diPackage w
o System Overview diClass
eco

Understanding the Main window organization

When you open CashSales, the Main window divides into panes. Together has four major panes.
&1 | Explorer pane | for system navigation

[3 | Editor pane for viewing and editing source code and ordinary text

2H | Diagram pane | for creating UML and other kinds of model diagrams

Ei | Message pane | for system messages and tasks

http://localhost/1gettoknow.html (2 of 6) [5/3/2001 3:48:41 PM]

Together Quick Tour -- Part 1

Explorer pane tab Main toolbar -

Diagram toolbar Diagram pane

Tngethers-— CashSales : : _ _ O 35!
Filg Edt Object Searpgh Yiew Select Optiohs Tools Help
BIDEES e | XbA 8 NEREE 88| %t it|a’
v
= |E B broblem_domain |
E B +TAY_RATE double=0.06 | ~CashsaleDetailorod Proguc] 0.7 1 [a
= R cashSales - -discountimountBigDecimal +calcTotalf:BigDecimal = E
\‘E;J- data_management -anlCashSaleSeduencerPluging +yerifshvailabilitd hoolean g
= B problem_domain = -payrnentBigDecimal +deduct@ty(void
o3 R -status:int=5ALE_NEW .
2% Collaboration Ba 2y DI D gyint
H, Generated From C productDesc.ProductDesc
H, Persiztert Save Pl +CashSal | |
H, Total of Sale |
= CazhSale Vg +raleSubtotal():BigDecimal | B [
&2 CashSaleDetai p i i “these classes are linked to original B b
=] o
[E] MakeCashsale it w; 3
+ = e
H InsutfPaymentExce; [public BigDecimal makeCashSale(EigDecinal paymentamt) I
15
& Prodicibess throws InsuffPaymentException '—,
2 ProductPrice ; iz
Requirements
server - paymnent = paymentime; | |
user_interface il %? S compute change due *\ “ =
il - | .
i] CazhSale java \
10| gy |]
X
E==EFF Make started. =
%% Make completed Bz
- %% gutput directory: C:yTogether5.04youthclazsseshCashiales “\ -
— 1Y
|pub|icclassCashSaleDetail | i |[inset |[Ltz [[egbt |
f A

Status bar Message pane Editor pane

If apaneis hidden, click its view button on the Main toolbar @EEE | B The right most button (EJ) is atoggle to expand the current pane (the pane with the light blue border) to fill the entire window. (In the snapshot
above, the current paneis the Diagram pane.)

Each pane has tabs for the page in focus. Clicking on atab brings its page into focus.
Y ou can resize the panes by moving the separators between them.

EXERCISE|

Exploring the Main menu

The Main menu has nine commands.

http://localhost/1gettoknow.html (3 of 6) [5/3/2001 3:48:41 PM]

Together Quick Tour -- Part 1

File Project and file operations

Edit Editing operations plus "infinite" undo/redo (for most operations -- not just editor changes)

Object Context sensitive menu whose operations vary according to the currently selected object. (Thisitem is available only if the "current item" has a speedmenu.)
Search | Search and replace across multiple files

View Toggle panes between hidden and displayed

Select Navigate among panes and diagrams

Options Customize your Together configuration

Tools Accessto several system modules

Help Hypertext documentation for Together

This snapshot below shows the T ools menu along with its Documentation submenu.

File Eclt Ohject Search Yiew Select Options | Toals | Help

Dacumentation P | 55 Generate HTML...

Quslity Assurance L4 Prirt Documerﬂatio%.

Inzpector Property Builder ... Generate using Template.
Code Template Expert... Design Template. ..

Databaze Impart/Export
Impart

Export

DTD Import/Expart

EJB Deployment Expert...

- v w

Make Project Shift+F7
Rebuild Project Crl+Shift+F7
Generate Makefils
Run/Debug]

Format Project Source.

Synchronize with external changes

Most of the Main menu commands have similar cascading menus. Some of the selections have keyboard equivalents. For example, the FilelOpen Project keyboard
equivaent is Ctrl+Shift+O.

Exploring the Main toolbar and status bar

Buttons on the Main toolbar correspond to some of the commonly used commands from the Main menu.

Run/Debug/Remote Debug
quﬂpinfiuve?nr Cui.’cipyfiaste 'ﬂ'ewopn’ons\ Properties Mt‘JI'{e.FBfid | Diagrim View Management
2 Yoy N
IB“@%I "?c‘%?lx[m & I%GI%FI%F%I%IEII E‘!:?%j %I b b 18 | 8 | e Hetp
New diagram Undo/Redo Find Back/Forward/ Parent |RBbUild Project Ctri+Shiftt+F7 |

Each toolbar button has a flyover, which pops up on amouse-over. The illustration above shows the flyover for the button "Rebuild Project.” Incidentally, the Main toolbar is undockable -- simply drag it off the window.

The status bar is at the bottom of the Main window. The large box on the status bar changes according to the mouse-over on the Diagram pane.

http://localhost/1gettoknow.html (4 of 6) [5/3/2001 3:48:41 PM]

Together Quick Tour -- Part 1

Show/Hide Message pane Current diagram element Progress of current operation Insert/Overwrite mode
E |public ProductDesc(String antemfum, String aDesc, String ablame, BigDecimal aPrice) | H | Madified | | Im=ert | | Lm 3 | | Cal: 24 |
Edit change Current row/column

Most items on the status bar are self-explanatory, except perhaps the "Diagram View Management" button. That button pops up the Diagram Options window to et you show or hide different kinds of diagram content.
EXERCISE]

Accessing speedmenus and properties inspectors

Most elements of the Together user interface have speedmenus, also known as "context” or "right-click”" menus. They give quick access to common element tasks. (Elements include Together artefacts such as diagrams as well
as UML elements such as class nodes, associations, and use cases.) Many elements also have properties inspectors for easy extensive customization.

Most speedmenus list properties inspectors among their choices. The snapshot below on the shows a class speedmenu in the back with a properties inspector superimposed in front.

To get to aclass speedmenu, right click on the class in the Diagram or Explorer pane. The second item on the speedmenu is Properties. Click it Clicking the pushpin on the Properties Inspector docks it on the bottom of

to bring up the properties inspector (in the foreground below). Note the pushpin (®) in its lower left corner. the Explorer pane. To undock, click the pushpin (48) in the upper right
corner.
4
i e
Add Linked.... “h = Qaﬂ ashSaIes
Datablanagement
Choose Pattern... = B ProblemDomain
cut 29 Problembomain
L, Sale Activity
EoRr], cash=ale.calcTt
Clone Propetrties of CashSaleDetail : | %% Sale State Diagram
Paste o Make & Sale
s CashZale
il e EIUE CashisaleDetal ||
Delete Name CazhSaleDetail E InakeCazhSale -
Format i | package Froblembamain Properties of CashSaleDetail
Layout stereotype ||mi-detai| l
Hoe | il | Properties|
Rename file CashZaleDetall java Mame Walle
e Ll | P Mg CaszhSaleDetail
= o tinal | i . _Package ProblemDotmsin
ﬁ e | D stereotype |m|-detall
=e | slias
Guality 4 | B¥Ends | S _
; =i ||+ file CashsaleDetall jayva |
Wiake Mor | IMPlEmEnts % | S | =
Febuild M @ Press Ctrl+Enter to finizh editing and close Inspectar y Press Ctrl+Enter to finish editing and close Inspector
o &

EXERCISE|

| TOP4 | NEXT—> | START HOME |

http://localhost/1gettoknow.html (5 of 6) [5/3/2001 3:48:41 PM]

Together Quick Tour -- Part 1
Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Wed, Apr 11, 2001

http://localhost/1gettoknow.html (6 of 6) [5/3/2001 3:48:41 PM]

Together Quick Tour -- Part 2

Together Quick Tour
Part 2: The Explorer Pane

Together's Explorer pane is a powerful feature for navigation, control, and even code-generation. This part of the tour examines all facets Explorer panein
detail.

Y ou will see how to use the Explorer to get information about the current project and the file system. Y ou will see how to use the Explorer pane to access
existing code modules. And you will get aglimpse of how Together is extended via built-in and custom building blocks.

The context for all of our discussionsis the sample CashSales project.

Contents:
o Exploring the Explorer pane

o Directory tab: navigating the file system

o Model tab: examining the logical view of an open project

o Diagram tab: organizing diagrams by type

« Overview tab: controlling the diagram view

« Component tab: accessing and reusing component models

o Module tab: accessing and extending Together building blocks

Exploring the Explorer pane
The Explorer pane is organized in tabs.

Directory physical structure of the open project and the file system
B8 ' Model logical view of the project's model elements

B8 ' Diagram listing of project diagrams by type

4k | Overview thumbnail overview of the Diagram pane

g&] | Components | reusable component models

E: | Modules custom building blocks

The Directory and Modules tabs are always present. The Model and Overview tabs are present only when there is an open project. The Diagrams tab and the
Components tab are present on request only.

To see the Explorer pane only, bring the Explorer pane into focus, then click the full screen toggle button (E) on the Main menu.

Directory tab: navigating the file system

http://localhost/2explorer.html (1 of 7) [5/3/2001 3:48:42 PM]

Together Quick Tour -- Part 2
The Directory tab shows the system directory structure relative to Together. The display has the following
top-level directory nodes.
o Current project (if aproject is open)
« Top-level physical system directories
« Samples -- directory of sample projects that ship with Together
o User projects -- default Together directory for your personal work
« Templates -- Together templates for C++, Java, and CORBA IDL

When you open a project, a Current Project node appears at the top of the listing. Y ou can expand that node
to see the physical files making up the project.

Double-clicking on a project file opens it in Together. Double-clicking on atext file opensit in the Together
editor (even if no project is open).

The snapshot here shows a Directory tab with the cursor over the java folder. The flyover text is the folder's
pathname. (A flyover box appears whenever the cursor is over an actual folder or file.)

The Directory tab allows you to navigate the physical file system and the current project's physical structure.

= Directary

= £l Current Project
£ CashSales
Elart...
Ela javax....
= lib
= Ch
=] Samples
|j C++
= = fav

ElEazhSales

0=

< \Togethers Disamplestjava

[+
[+
H Il ehb
[+
[+

£ ejb20

£ Hella
= £ User Projects
F [Templates

Note: Y ou can edit the navigator.config file to limit which drives the directory tab shows. Thisis especialy useful for networked mapped drives.

Model tab: examining the logical view of an open project

http://localhost/2explorer.html (2 of 7) [5/3/2001 3:48:42 PM]

Together Quick Tour -- Part 2

The Model tab exists when there is an open project. It provides alogical view of the major elements

making up the project model. O (i Ak
The Model tab shows everything in the project -- packages, diagrams, classes, and interfaces (Java) -- al = | BB
organized into atree. The tree root corresponds to the project itself. The second level nodes include: = B8 cashIales
« Project packages (subpackages are on lower levels). Our snapshot shows several: [+ [E data_management
data_management, problem_domain, Requirements, server, user_interface, and util. # [£] problem_domain
« Diagrams generated from the Main file menu, such as the deployment diagram (POS System) in our -5, Reauiremerts
SnapShOt || SErYEr
= user_jrterface
« <default> top-level model PO cer irterface
o Top-level interfaces *, Initislizing GUI from PO
The Model does not necessarily reflect the physical structure of the project files, since project packages & E%:‘E%TE%
can reside virtually anywhere in the system. & BOSFrame
The flyover text in the snapshot is the fully qualified name of the class under the cursor. E POSFrame_AhoutBox
H [E] uil
Fregquently accessed model elements can be stored in the Favorites folder at the bottom. B8 retfaults
,:En Architecture View
o Ohject Yiew
EEE, OpenFirst
EED System Cverview
$] Component
[POS System
[# Favorites

The Model tab has a small toolbar at the top that gives choices for the tree view. The toolbar has three buttons.
« “ Make diagram nodes expandable to show diagram content (toggled off by default).
« i Sort package tree nodes al phabetically (toggled on by default).
. [0 Display packagesfirst, before al other items (toggled on by defauit).

Diagrams have special icons, such as * foraumL sequence diagram. Double-clicking on the diagram in the Model tab opensit in the Diagram pane. Y ou
can use the diagram speedmenu to open it in anew Diagram pane tab rather than in the currently open pane. (Y ou can also set the options to have a double

click open the diagram or other element in a new tab.)

Diagram tab: organizing project diagrams

http://localhost/2explorer.html (3 of 7) [5/3/2001 3:48:42 PM]

Together Quick Tour -- Part 2

The Diagram tab gives alisting of all the diagramsin a project, organized according to type. It appears if
Show Diagramstab flag is checked on the General page of the Options dialog.

Each node in the Diagram tab corresponds to a diagram type. Thistab displays the tree view of all types of
diagrams available in Together.

All diagramsin the current project show up in the appropriate nodes. Expand a node in the usual manner by
clicking it. Open adiagram in the Diagram pane by double-clicking it in the Explorer.

The snapshot here shows a Diagram tab with the listing of Activity diagrams expanded.

CARE

g Class Diagrams
= 'ﬁ‘ Uze Case Diagrams
9P Make & Sale
‘f_'f' Product Scanning Detailz
[+ "ﬂ_. Sequence Diagrams
i+ 2% Collaboration Disgrams
= G@ Statechart Disgrams
G@ Sale State Disgram
G@ Scanner Statechart

T%T:"e, i civity Disgrams |
53

S, Sale Activity

% Business Process Diagrams
[+ {| Component Diagrams
[Deployment Disgrams
F B Robustness Disgrams
[# Entity Relationzhip Diagrams
[# @ Enterprize Application Diagrams
[+ i EJB Assembler Disgrams
[+ {:E Wiebh Application Diagrams
M ¥ML Structure Disgrams

Overview tab: controlling the diagram view

http://localhost/2explorer.html (4 of 7) [5/3/2001 3:48:42 PM]

Together Quick Tour -- Part 2

The Overview tab gives athumbnail sketch of the Diagram pane, placing a shadow over the part of the
diagram that is currently visible. Y ou can use the Overview to control the size and location of the visible
part of the diagram.

The Overview shadow tightly corresponds to the visible region in the Diagram pane. Any change in that
region forces a change in the Overview and vice versa. Thisincludes changes forced by resizing the window
or the panes. (The proportions of the shadow are aways constrained to match the proportions of the
Diagram pane.)

The cursor changes in the Overview as it goes over the shadow. The shape of the cursor indicates move or
zoom modes.

"

To movethevisibleregion without ~ To resize the visible region, grab

resizing it, hold down the the lower right corner of the
left-mouse button while moving shadow and drag.
the cursor.

Components tab: accessing and reusing component models

http://localhost/2explorer.html (5 of 7) [5/3/2001 3:48:42 PM]

Together Quick Tour -- Part 2

The Components tab allows you to access and reuse component

models. It is available only when a project is open. To see Project PropEs e Bl
Components with the CashSales project, invoke the project ~Froject- -
inspector via the main menu: : P : :
Project name: |[Caszhsales | tpr (leqal filename far your Operation System)
EI|e|PI’Oj ect Properties... Location: TTogethers Des | HjavalCashSalesiCazhSales tor %.l
Check "Include Components" on. ' - FEEE =T Ak B
P Default language: | Java Lo e ﬂl‘g’ @ ’é’k — I
The CashSales project uses Coad Modeling Components. These B &l [C _ lizd
enterprise component color models are part of the Together Comporerts: [l Include Componen| = [E18 Accourtinghgmt i
installation. : : = E]8 Accourtingdemt. Accourt
ik e ol Accourt
All components reside in Together's modules/components L& s=sessProfitabilty
directory. L& calcCreditPostings

Ela sccourt
E| AccourtDesc
E| BankAccount

Y ou can copy packages and classes shown in the Explorer
Componentsto your class diagrams or to any package in your

roject. =
o Ela chartOfsccounts
Y ou can also create your own components. Place themin El@ CostCenter
component subdirectories for use in projects. Ela CurrencyPairDesc k=

E& customerAccount
Ela ExchangeRate

Ela GeneralLedger

B cLaccourt

Ela projectaccourt

El SupplierAccount
E'| Accountinghiogmt Budget
E'| Accountinghigmt Payment
E]& Accountingomt Posting

Our snapshot shows some of the Coad Modeling Components.
The small lock on anicon indicates read-only.

B

1]

Modules tab: accessing and extending Together building blocks

http://localhost/2explorer.html (6 of 7) [5/3/2001 3:48:42 PM]

Together Quick Tour -- Part 2

Together is highly extensible by means of an open Java API. The open API enables you to write Java ,
programs that use model information from Together and interact with Together itself to extend its native @EF ﬂ% r‘@ r@n |
capabilities. Such building-block programs are called modules. = = &l Modules -
= &4 Early Access

Ft C++ Definition Doc-Comment

Modules are stored in subdirectories under:

$TOGETHER_HOM E$/modules/com/together soft/modules i} Persistence PowerTier
. .) ! Search for Usages
The Module tab gives access to the modules that are supplied by Together, your own modules, and third FiL Smaltalk
party modules. £ Software A Bolero Integration
The Explorer Modules tab uses these special icons. L é@* le"“”- ity
= ample
« % Modulefolder. A folder has the same speedmenu as its contents (to run or activate the module). 3 Compare Dependencies

F Hello wwiorld

. Java source code module
E Insert Tag

. M Compiled Java module Ehnw Call Tree
. Tcl script module (included for backward compatibility) s Show Dependencies 2
3 Showe Inheritance Tree
The Sample/Tutorial directory contains some simple modules that you can examine in the Editor and run. = Tutorial
The standard output goes to the Message pane. Use these tutorial modules to discover how to write your = <=l System
own modules. @. Custom properties
£ Doc Generation & Design
@ HP E-Spesk =
{] v |

| «<— previOUS | TOPA | NEXT— | START HOME |

Copyright © 2001 TogetherSoft Corporation. All rights reserved.
Last Revised: Thu, Apr 12, 2001

http://localhost/2explorer.html (7 of 7) [5/3/2001 3:48:42 PM]

Together Quick Tour -- Part 3

Together Quick Tour
Part 3: Navigating Within Together

Together is apowerful architectural tool that maintains consistent presentation of the project at al times. The Explorer pane is always in sync with the actual
project. And the code in the Editor pane is always in sync with the model class diagrams.

In this part of the tour, you will look at the connections between the Explorer pane and the Diagram and Editor panes. And you will examine the project
presentation in the Diagram and Editor panes to see how closely knit the two views are.

The context for all of our discussionsis the sample CashSales project.

Contents:

« Opening and closing diagrams from the Explorer pane

o Opening source code files from the Explorer

o Integrating views -- Explorer to Diagram to Editor

Opening and closing diagrams from the Explorer pane

Every project has atop-level default diagram. Unless you change its properties, the first time you open a project, the default diagram opens in the Diagram

pane.

Diagrams can be opened in the Diagram pane only from within their projects.

Y ou can open adiagram from the Main menu (under File). But it is easier to open adiagram from the

Model tab () in the Explorer pane by using one of these two methods.

« Doubleclick on the diagram (name or icon). It will open in the Diagram pane, closing the current
focus diagram (if any).

__Or__

« Right click on the diagram in the Model tab to get its speedmenu, then select Open in New Tab.

This opens the diagram in a new tab without closing the current one.

CJpen

Cpen in Mew Tab [
Hh

ey

Add as Shodcout

Propetties. .

Alt+Enter

Update Package Dependencies

Cut

Copy

Clone

Pazte

Pazte Shortout
Celete

Crl+Shift+C

Clrl+Ehitt+
Delete

Tools

Guality Assurance

There are different types of diagrams, each with an associated icon. gz isthe default diagram icon. Together's UML diagram icons are abstractions of actual

http://localhost/3navigation.html (1 of 5) [5/3/2001 3:48:45 PM]

Together Quick Tour -- Part 3
diagrams.

&n class/object b sequence % statechart | =] component

W use case 242 collaboration *'hactivity (1 deployment

The Model tab of the Explorer displays diagram files with those icons. The tabs of open diagrams in the Diagram pane uses the icons as well.
Together aso has seven special diagram types, mostly for Enterprise or J2EE modeling.

To close a diagram without closing the project, right-click its Diagram pane tab. This brings up a clickable close box like
that on the right.

o

rEE ProblemComs

C|DSEI:

Y ou can aso close adiagram from its Diagram pane speedmenu. Right click on an empty region of the diagram to get its
speedmenu.

Opening source code files from the Explorer

Y ou can open files from three Explorer tabs: the Directory tab (&), the Model tab (88, and the Diagram tab (ot).

In the Directory tab, you can open project files ([iF]) and text files (). Double-clicking on atext file opensit in the Editor pane. Conversely, when you create a
new file (source code or diagram), it will show up in the Explorer.

The Model tab uses three special fileicons.

classsourcefile [F] interface sourcefile package directory

Double-clicking on a class or interface in the Model tab opens its source code file in the Editor pane. The snapshot below shows using the model tab of the
Explorer pane to jump to a method in the Editor.

http://localhost/3navigation.html (2 of 5) [5/3/2001 3:48:45 PM]

Together Quick Tour -- Part 3

=
b i
Copyright (c)200i TogetherSoft Corporation. Patents pending. A
= B CashSales b
[# data_management :
= problem_domain package problem domain;
3 problem_domsin i
35? Callaharatian import java.math.Bighecimal:
"|]_. Zenerated From Code G
4 Persistert Save | i
"|]_. Total of Sale * @stereotype plug-in point
CashSale 2 * @author TogetherSoft
CashSaleDetsi s g
B 1on Tl public interface IMakeCashSale {
= B MakeCashSale BigDecimal makeCash3aleiBigDecimal paymentimt); b
= makeCashale()| i throws InsuffPavmentException
InzuffPaymertException 1 e
ProductDesc s
ProductPrice o 4 [E | »
[+ Reqguirement= = —bMakeCashSale.java |

Double-clicking the diagram name in the Diagram tab opensit in the Diagram pane.

Y ou can also open afile from the Editor pane speedmenu. Choose Open to get afile selection box. Unlike the Explorer, the Editor allows you to open any type
of file.

Integrating views -- Explorer to Diagram to Editor
Sequence diagrams and class diagrams are related directly to source code. We'll use the CashSales project to illustrate some of these connections.

To get the Main window below, follow through these steps:
1. Expand the problem_domain package in the Model tab of the Explorer pane.
2. Open Total of Sale sequence diagram from the Model pane.

3. If needed, adjust the sliding bars on the Diagram pane to scroll to aDetail. (Alternatively, use the overview tab of the Explorer to position the viewing
region.)
4. Select the aDetail object in the Diagram pane by clicking on it.

http://localhost/3navigation.html (3 of 5) [5/3/2001 3:48:45 PM]

Together Quick Tour -- Part 3

Together 5 -- CashSales N -0 x|

Filz Eclt OTbje:t Search Wieww Select Options Toaol: Help
BIDaE&|sc | XbE (M EEFED | HIE| e8| ms| x|y 8

L Total of Sale |

+

b

B B cashSales a
data_management
Bl problem_damain

B2 problem_domain

2% Collabaration

"|]., Generated From Cod

"ﬂ_. Persistent Save

*, Total of Sale

CashSale

CashSaleDetai

=] 1on

B MakeCazhSale

asale aDetail
ZashSale ZashSaleDetail

|
:
I
|
aBtn : %
[] I
|
I
I
I

aProductDesc
FroductDesc

A

tl v | 03]

I
calcTotald: BigDetimal :

I
*n] calcTptalg:Bighecimal

e,
S’

1]

L] ++
- 7

e

InsuffPaymerrtEx::epﬂ_
=k InsuffPaymentEx * Gpersistent*/

i InsufiPaymentEx public class CashialeDetail |
ProductDesc

ProductPrice /*% Thisz indicates how many of this item are heing purchased.
REqulrEmEn‘tS T e aTl.T. = am T oz res a9 R

B HEE

| I

1]

T T T L L L L L '»i | ¥
L e bl D e e

server - w4
: | ¥ —LCashSaleDetail.java

i Proore=s[T11} |[nsent || Lnct7 |[coet |

http://localhost/3navigation.html (4 of 5) [5/3/2001 3:48:45 PM]

Together Quick Tour -- Part 3

When you select an object in a sequence diagram, the

. . . Total of =al
Editor automatically scrolls to the corresponding class L | -
code and highlights the first line of its definition. 7
The snapshot to the right shows selecting the call to : B
calcPriceFor Qty() on the sequence diagram. The aSale aDetail aProductDesc 5
method becomes highlighted in the Editor. CashSale Zash3aleDetail FProductDesc B
aBtn

] I I I

calcTotald:BinDefimal : :

I I

*In] calcTotald:BigDecimal |

I
A% By passing in the gty, we can efficiently do quantity discounts Ef
public Bighecimal calcPriceForlty(int gts) i
Bighecimal price = getPricel(): R
if (gty > 1) { g
price = price.multiply(new Bighecimal (gty)): =

| »
IPdeudDesc.java

EXERCISE

| <= PREVIOUS | TOP4 | NEXT—> | START HOME |

Copyright © 2001 TogetherSoft Corporation. All rights reserved.
Last Revised: Thu, Apr 12, 2001

http://localhost/3navigation.html (5 of 5) [5/3/2001 3:48:45 PM]

Together Quick Tour -- Part 4

Together Quick Tour
Part 4: Customization via Options and Properties Inspectors

Together gives users many ways to customize their workspaces (including changing the text configuration files). In this part of the Together Quick Tour, you
will learn how to use the properties inspectors and options menus to do the customization. When you are finished, you're ready to begin the Together Tutorial.

The context for all of our discussionsisthe CashSales project.

Contents:
o Accessing default and project options

o Changing diagram options

« Changing editor options

o Customizing via object inspectors

Accessing default and project options

Default, project, and diagram options are available via the Options command on the Main menu. The dialog box shown below comes from the Options|Default
command. Options are organized by tabs; the General tab is at the front in this snapshot.

http://localhost/4customization.html (1 of 5) [5/3/2001 3:48:47 PM]

Together Quick Tour -- Part 4

Bloecrutopions x
(Generate HTML [EJB [Tools | Version Control | Builder | Text Editor | RunDebug |
}’ General r Disgram r Datahase r ' ?IeW:M&nﬁgpmam:: r Print |/ Source Code]
Matme | Walue

e o 1 B i o A P e e e b e e R e e i e Iﬁ -
e B e o T T T o [sttt st Buziness Modeler %
— Confirm change to Look & Feel o DESIGRER e
[FF Fort properties o restart o s s Developer
L Enable mouge whesl Support - Programimer _
[DesktOp OpHORS oeersemms s o s e s e s
— Save files when switching application o [v] i

Description

ol 15 a predefived setup of the nser interface that helps sron work with Together frora a specific point of wieer.
For exaraple, if won are an architect desigring a nenr systern, wou probably don't care abont source code, and won
don't need or want to see the Editor or angrthing related to inplementation.

& fter wou select a rofle option, Together antomatically sets up to provade ready access to only those elements of [™|

Ok Cancel Apply Advanced == Helg

N

Some settings have check boxes. Some are on pulldown menus. Some have text boxes that can be edited in place. Clicking on a setting name brings up its
description on the lower part of the pane.

The snapshot above shows configuring Together for different workspace roles. For example, the Business Modeler role focuses on not exposing extra detailsin
Diagram pane. The Editor pane shows only on demand, and menus and toolbars are ssmplified.

The default workspace role is Developer. Changes in the workspace role setting take place when you restart Together, when you select Options|Reload from the
Main menu, or when you click Apply on the options dialog box.

Many of the project options (Options|Pr oj ect) are available as default options. They can be applied at a project level or as defaults for all projects.

Changing diagram options

http://localhost/4customization.html (2 of 5) [5/3/2001 3:48:47 PM]

Together Quick Tour -- Part 4
Diagram options control the diagram presentation views. Y ou can access a diagrams options by selecting Diagram Options on its speedmenu.

Diagram Options: Total of Sale T - (Il i'

| Diagram [isw Management | Prit |

rame | Walle

LIS v st et e e lﬁ:..re.;t=v|| -
T b o e e e e e e g e
— Maximum width of classes, interfaces and packages oo [RECHlINEAK :
e T L ey
— SHOMY DEDIE BIOFIEE S o D —
B] e |
a8 {n = —
Dezcription

Defines the way links ave drawn in the diagrams:

® Direct - always draw links divect

*® Rectilinear - abwrayrs drawr links rectilinear (hend links at a i dearee angle, and cormbine
Generalization links frorm one base class in a tree together)

Ok Cancel Apply Advanced == Help

A

Y ou can apply option settings to a particular diagram or to an entire project. Or you can apply them as defaults for diagramsin all projects.

Changing editor options

Look for the Text Editor Options on the Editor speedmenu. There are several choices for settings.
» Font size and cursor orientation
« CodeSense (automatic code completions for Java statements)
« Keyboard hot keys
« Schemesfor the project language, such as keyword color, etc.
« Externa editors, what they are and Together menus on which they'll appear

http://localhost/4customization.html (3 of 5) [5/3/2001 3:48:47 PM]

Together Quick Tour -- Part 4

CodeSense works with the Java libraries to compl ete statements. The snapshot below comes from an Editor with activated CodeSense. To get the snapshot
below, we started inside the body of a method. Then we typed s.sto pop up a menu of available String methods.

wold showCodelense(]

String s = "Hello alex™:
String ©

.3

x
e

g regionMatches (int,String,int, int)
=4 replace (char,char)

* startsWithiString
=iy startsllith(String,int)
iy substring(int)
kg substring(int,intc)

=iy regiontatches (boolean, int, String, int, intc)

hoolean
String

boolean
boolean {%
String
String R

boolean |*|

1]

| b

Example java |

The Together Editor recognizes source code files in the language of the
current project. With Editor Schemes you can tailor the Editor for your
project language, including such things as keyword color and auto indent.
Y ou can a'so build templates for commonly used code constructs.

The snapshot to the right shows how we created a new Java switch statement
template. In the Editor options, select Schemes|Java|Snippets to get the
Snippets window.

Back in the Editor, we were able to place the template in the code by typing
the snippet name (switch) then Ctrl+J.

S Example use of code snippet f
public woid codel3nippetiint =) { |
switch int._r::-:I:nr:EE:E:injn]l I
CAZe CONSt_eXpression: statement; break:
Ccage const expression: statement; break: [
Key | Title
default: statement; break; |for | forl.. ...}
1 while Cwvhilel .t
b o |2 i mwitch | switch -
Salell java | 'f s ! if.("';.]{'“}
ife |0 delzed)

http://localhost/4customization.html (4 of 5) [5/3/2001 3:48:47 PM]

Snippets)

for
wvhile
sitch
it

ife

+ - 1+

|| Space Expand ||/On & blark line

Hey:

=weitch

Title:

zwvitch

Cortent:

=weitch (int_expression) |
case const_expression: statement, break;
caze const_expression: statement; break;

default; statement; break;

i

Ok % Cancel

Together Quick Tour -- Part 4

EXERCISE

Customizing objects through properties inspectors

Together considers many elements to be objects, including:
« diagrams
« Mmost diagram elements
o Classes
« javainterfaces
» packages

Each Together object has a speedmenu with a Properties command, which brings up the object's properties inspector. The properties inspector lets you
customize the object's look, behavior, characteristics, and documentation.

Properties inspectors vary according to the kind of object. The picture here illustrates using a properties inspector to customize the color of the
data_management package.

We weren't very pleased with that
fuchsia. So we undid setti ng the Properties of DataManagemenk
color scheme by clicking the undo Properties | Hyperlink |
button (:Z) on the Main toolbar.

[Mame

backaround colar

foreground color

30 ook

@ Prezs Ctrl+Ernter ta finizh editing and close Inspectar

EXERCISE

| <= PREVIOUS | TOP#4 | START HOME|

Copyright © 2001 TogetherSoft Corporation. All rights reserved.
Last Revised: Thu, Apr 12, 2001

http://localhost/4customization.html (5 of 5) [5/3/2001 3:48:47 PM]

Together Tutorial -- Part 1

Together Tutoria
Part 1: Projects and Packages

The scope of the Together Tutorial includes the most commonly used features of Together. We'll show you how to construct your own project from the
beginning. If you are brand new to Together and think you might have trouble navigating your way around, go through the Together Quick Tour before
beginning the work here.

One of the early and continuing hallmarks of Together isits ability to keep class model and code in sync -- all the time, every time. It's what Together calls
LiveSource™ technology, and you'll get afirst peek at it here.

Contents
« Creating anew project from scratch

o Working with the <default> diagram and primary root directory

o Creating new packages

o Showing package dependencies

e Tipsand Tricks

Creating a new project from scratch
Most of the Together Tutorial is centered around this sample problem.
"A small regional airline needs an application for keeping track of flight reservations and ticket revenues.”

Thefirst step in tackling this problem is to set up a Together project for developing a problem solution.

[Step: Create a new Java project named airline. |

Open Together and select File]New Project from the Main menu. Y ou'll see aNew Project dialog box like the one below.

http://localhost/1startingprojects.html (1 of 5) [5/3/2001 3:48:47 PM]

Together Tutorial -- Part 1

Mew Project EI
rProject
Project name: |airline | tpr (legal filename far your Operation System)
Lacation: | \Tagethers Ol projectzairineairline ot J%
Imitizl dizgrarm: Clazs w | [_] Show package dependencies
Detfault language; |Java T|
Componerts: LT %
C++
L lDLI : Advanced == Help

Unless you specify otherwise, Together creates a new directory for the new project inside $TOGETHER_HOM E$/mypr oj ects. The name of the directory is
the same as the project name. Together gives a choice of three languages: Java, C++, or CORBA IDL.

At aminimum, a project consists of:

« aproject file (with the .tpr file extension and Lz icon)
» adefault package diagram (default.dfPackage)
« aprimary root directory

When we created airline, Together created three files in the primary root directory airline.
« default.dfPackage
o airlinetpr
« airline.tws (Together workspace settings)

The User Projects folder in the Directory tab of the Explorer pane corresponds to the physical directory STOGETHER_HOM E$/mypr oj ects. The primary root
directory of airlineis under User Projects. And since airline is open, its primary root directory appears also under Current Project.

Working with the <default> diagram and primary root directory

Together generates a <default> diagram for each new project. The <default> diagram shows packages of the primary root directory as well as classes of any
source code filesin that directory. (Default diagrams and diagrams for packages have the icon gg. They are class diagrams.)

When a project isfirst created, the <default> diagram is simply a blank background. Below are two views of the newly created project in the Explorer pane.

http://localhost/1startingprojects.html (2 of 5) [5/3/2001 3:48:47 PM]

Together Tutorial -- Part 1

B = sitline Directory tab view. The primary root directory (airline) contains no other directories when the project isfirst created.
airline tar Together uses the suffix .tpr to indicate that thisis a project file. The suffix .twsisfor Together workspace settings. All three
[airline tues filesare ASCII files.
default dfPackade
5 &8 ailine Model tab view. Thereisonly one part of the model. It contains no elements at the start.
B cdefault-

Creating new packages

The <default> diagram is the place to start organizing a project into packages. The air line project will have three packages.
[Step: Create a new package named ProblemDomain inside the <default> diagram. |

To create anew package, click on the package button (EZ) of the vertical Diagram toolbar. Then click on the diagram background.
The diagram will get a new node.

___..___!

ackaged| |

E

At this point, you can edit the package name by typing directly in the in-place editor that is now active. Press Enter to apply the name.

—

Asyou make a package, you can see the Together's LiveSource technology go to work -- Together automatically creates a physical directory for the package
and generates a default diagram inside the directory. The new diagram will show any physical project content Together finds now or later.

In the Diagram pane, the <default> diagram now contains a single node, which is a package. I

ProhlemDomain

The Model tab of the Explorer pane shows the new Package node. Inside the new package is a node for = B8 airline
another diagram, which has the same name as the package. Both the new package and the new diagram are =t ProklemDarmiain
currently empty. &8 ProblemDomain
B2 =default=
The Directory tab of the Explorer shows the new file structure of the project. = <= aitline new dfrmﬁw
There's anew subdirectory of the primary root directory named ProblemDomain. That directory now =4 h:mg Dmg"-' _ d:: " : fagram file
contains the file ProblemDomain.dfPackage, which is the default diagram for the new package. (The .wmf _ rt'j FTLOMmaIn G ackage
fileis a Windows metafile.) S airine- e
D airling tws

default.dffackage
D default.dfPackage wimf

To see the contents of the new ProblemDomain diagram, double click the diagram in the Model tab of the Explorer. Alternatively, use the diagram speedmenu
to open the diagram in a new tab.

http://localhost/1startingprojects.html (3 of 5) [5/3/2001 3:48:47 PM]

Together Tutorial -- Part 1

[Step: Create two additional packages in the <default> diagram: User I nter face and DataM anagement. |

There's a shortcut for creating multiple packages. Ctrl+Click the package button on the toolbar to keep the button depressed. While the button is depressed, you
can click on the Diagram pane, creating packages and renaming them in place without returning to the toolbar for each package.

To release the button, click it again. (If you drop an extra package on the diagram by mistake, the undo button on the Main toolbar will removeit.)

Fr@aﬁr%rﬂl Eﬂﬂdefaurt:—|
SAEIE] s — B
= B8 airline % I
+ Datahanagement ProblemDomain DataManagement | |-
+ Userlnterface = [|
= ProblemDomain _ I
22 ProblemDomain Userinterface
T =defautt= =t
A =
f | " | e L L L R R RS RS R R | b |
Showing package dependencies
[Step: Create a dependency from User I nter face to ProblemDomain. |
The Diagram pane toolbar provides an entire suite of tools for creating UML model elements. _I

To create a package dependency, click the dependency button (with the dashed arrow icon, (.). Then ProblemDormain
click the dependent package (the "client") in the diagram and drag the end of the arrow to the package e
that it depends on (the "supplier"). e

Y our dependency should look like the snapshot here. e I

Userinterface

Y ou can use the dependency's inspector to alter its properties, including changing its label, picking a stereotype, and setting the roles of supplier and client. To
get the inspector, right-click on the dependency to bring up its speedmenu, and select Properties.

Tipsand Tricks

« Itisbest to name projects with legal filenames for your operating system. Avoid embedding blanks punctuation marks, or any special characters.
« Thesuffix .tpr indicates Together project. Together keeps all of itsfilesin flat ASCII text -- you can view them with an ordinary editor.

http://localhost/1startingprojects.html (4 of 5) [5/3/2001 3:48:47 PM]

Together Tutorial -- Part 1
« Always organize your projects in packages.
« To create multiple nodes of the same type, Ctrl+click the toolbar button to keep it depressed. Y ou can even use the in-place editor as you go along.
Clicking the button again releasesiit.

[TOPA | NEXT—> | START HOME |

Copyright © 2001 TogetherSoft Corporation. All rights reserved.
Last Revised: Thu, Apr 12, 2001

http://localhost/1startingprojects.html (5 of 5) [5/3/2001 3:48:47 PM]

Together Tutorial -- Part 2

Together Tutoria
Part 2: Requirements and Use Case Diagrams

Thefirst steps of any software project involve nailing down some of its features. The airline problem is potentialy huge, but we will concentrate on a small
number of requirements.

« Make areservation.

« Buy aticket.

o Determineif aflight has room for more reservations.

« Find thetotal ticket revenue for aflight.

In this part of the Together Tutorial, you will create a Use Case diagram to capture these requirements.

Contents:
e Creating anew diagram

o Creating actors, use cases, and a system boundary

o Connecting diagram € ements

« Removing diagram elements

e Tipsand Tricks

Creating anew diagram

Open the airline project that you created for the previous part. Bring the ProblemDomain diagram into focus (bring it to the front in the Diagram pane).

[Step: Create a new Use Case diagram named M akeReser vation. |

Clicking the New Diagram button ([8]) on the Main toolbar brings up a New Diagram dialog box.

http://localhost/2requirements.html (1 of 6) [5/3/2001 3:48:49 PM]

Together Tutorial -- Part 2

x

UML | Tagether |
&5 U b 3E O B og] O

Clazz Lze Case Zequence Collaboration Statechart Activity Component Deployment

il

Diagraim name: |r-.-1akeﬁeservatin:un

Packane name:. |zdefault=

RN

] include in current diagram

Description;

|Sn:enarins for making flight reservations. |i|

Press Ok to create a newe diagram.

Dk[| Cancel Help
4

When you click OK, the new diagram shows up in the Model and Directory tabs of the Explorer pane.

Creating actors, use cases, and a system boundary

The M akeReservation diagram should now be in focus now in the Diagram pane.

[Step: Create three actors, Passenger, FinanceOfficer, and Agent. |

The Diagram pane toolbar varies according to the type of diagram.

Click the actor button (5;r) and then the diagram to create a new actor. With the in-place editor, fill in the actor's name.

Fassenger

If you Ctrl+click the actor button to place an actor in the diagram, you'll be able to create another actor without first returning to the Diagram toolbar. Y ou can
even edit its name as you go along. That's how most of the element buttons on the Diagram toolbars work. To click on the diagram without putting on another

http://localhost/2requirements.html (2 of 6) [5/3/2001 3:48:49 PM]

Together Tutorial -- Part 2
actor, simply click the actor button once again.

[Step: Put a system boundary on the diagram and name it Airline Reservation System. |

Click the system boundary button ([g]) and then the diagram to create the system boundary.

Fill in its name with the in-place editor. | Airline Reservation System [
1
When you finish, you can move the system boundary and resize. Our snapshot shows resizing :
by grabbing a corner. |
|
|
:
|
" '
|
|
|
|
|
|
|
:
|
———————====- === =======]

Step: Create four new use cases.
1. Makea Reservation
2. Check Availability
3. Buy aTicket
4. Find Ticket Revenue

Click the use case button (<-») and then on the diagram to create a new use case. Use the in-place editor to fill in atext
description.

Y ou can create a use case then drag it in the system boundary. Or you can create the use case within the system boundary at the start. Y ou can aways reposition
any diagram element by dragging it with the mouse. A use case within a system boundary will move when the system boundary is repositioned.

Connecting diagram elements

Communication links indicate which actors are involved in which use cases. Our diagram will involve the Agent in three use cases. But the Passenger will
participate in only two and the Finance Officer in only one.

http://localhost/2requirements.html (3 of 6) [5/3/2001 3:48:49 PM]

Together Tutorial -- Part 2
Step: Create some communication links:
1. Between Passenger and Make a Reservation
2. Between Passenger and Buy a Ticket
Between Agent and M ake a Reservation
Between Agent and Buy a Ticket
Between Agent and Check Availability
Between FinanceOfficer and Find Ticket Revenue

o 0 A~ w

Y ou can use the same technique to create any linking element (communication, dependency, association, etc.). Begin creating alink by clicking the
communicates button on the Diagram toolbar (+).

A thin halo appears around potential source elements as you pass the Click the source element in the Diagram pane and drag the end to the target
cursor over them. element.

Potential target elements also get the halo.

ﬁ [}S Make a Reservation % = Make a Reservation

Passenger FPassenger

An actor can be atarget or a source for acommunication link (but not both!). Y ou can start at the use case and stop at the actor or vice versa.
Step: Connect the use cases:

1. Buy a Ticket extends M ake a Reservation.

2. Make a Reservation includes Check Availability

The Diagram toolbar has an extends button (£:*) and an include button (i3®). The choice of target vs. source choice isimportant for these links. For example,
when you use extends, be sure that Buy a Ticket is the source and M ake a Reservation is the target.

[Step: Make sure all use cases are inside the system boundary. Drag the use cases and resize the boundary as needed. |

Below is a snapshot of our diagram after we completed all the steps.

http://localhost/2requirements.html (4 of 6) [5/3/2001 3:48:49 PM]

Together Tutorial -- Part

Fassenger

“-—-______E

2

Airline Resemation System
Check Availability Find Ticket Revenue

=zinclude== | \
|

Finance Officer

.

Make a Reservation
il

==pgxtend== |

Buy a Ticket

Agent

Y ou may have to rearrange the elements to make your diagram look ours. Move them around as you see fit. Y ou can drag them individually, or you can select

severa to move at the sametime.

Removing diagram elements

Step: Corrupt your Use Case diagram with these steps:
1. Create anew use case (any name will do).
2. Make acommunication link between the new use case and the Agent.
3. Create an extends from Check Availability to the new use case.

Then move the new use case around several times to observe how Together handles the rearrangement.

Y our diagram should be a mess by now, and you need to get it back as it was before.

Together's undo button (‘Zy) on the Main toolbar is afirst line of defense in dealing with mistakes. But when the undo stack is high, the undo button may not be

the best way to go.

[Step: Get rid of the new (corrupt) use case.

An easy way to get rid of this use caseisto deleteit. Select it in the diagram and press the Delete key. (Alternatively, select Delete from the element's
speedmenu.) When you do, the bad use case will disappear along with all of itslinks. There's no need to remove the links separately.

Tipsand Tricks

« There arethree easy ways to rename an actor, use case, or system boundary.

http://localhost/2requirem

ents.html (5 of 6) [5/3/2001 3:48:49 PM]

Together Tutorial -- Part 2
o Double click on the diagram element to bring up the in-place editor.
o Use the Rename option on the element's speedmenu.

o Change the name on the Properties tab of the Properties Inspector for the element.
« Toresize ause case, actor, or system boundary in a diagram, select it, then drag on one of its corner handles. To reshape drag on a side or top/bottom
handle.

« If you make a mistake, use the undo button. Ctrl+Z is a keyboard shortcut for undo. Ctrl+Y isthe keyboard shortcut for redo. (The misc.config file sets
the default undo buffer size to 4096 KB. Y ou can change that by editing thefile.)

| < previous | Tor4 | NEXT—> | START HOME |

Copyright © 2001 TogetherSoft Corporation. All rights reserved.
Last Revised: Fri, Mar 30, 2001

http://localhost/2requirements.html (6 of 6) [5/3/2001 3:48:49 PM]

Together Tutorial -- Part 3
Together Tutorial
Part 3: Business Rules and Activity Diagrams
Business rules constitute some of the requirements of a problem. In our previous discussion of use cases, we limited the required features to these four:
o Makeareservation.
« Buy aticket.
« Determineif aflight has room for more reservations.
« Find thetotal ticket revenue for aflight.

In this section, we will examine the details of what it means to "Make areservation” in the context of activity diagrams.

Contents:
o Starting activity diagrams based on business rules

o Organizing activities, start and stop states with swimlanes

o Creating activities and transitions

« Changing flow of control with forks, joins, and decisions
o Tipsand Tricks

Starting activity diagrams based on business rules

How can you "Make areservation?' Our airline uses this (admittedly naive) businessrule:
You can make a flight reservation if the number of tickets sold so far for the flight does not exceed the capacity of the airplane.

It's time to focus on exactly what happens when a reservation is requested.

[Step: Create anew Activity diagram in the ProblemDomain package and name it Request Reser vation. |

http://localhost/3activitydiagrams.html (1 of 9) [5/3/2001 3:48:50 PM]

Together Tutorial -- Part 3

Begin tissiep with the New iagreioon (B) x

on the main toolbar.
ther |
v b = B B 2] J

Clazs ze Caze Sequence Collaboration Statechart Activity Component Deployment

You'll have to enter the name in the textfield at UhL | Ta
the upper right of the dialog window. (If you

didn't begin from the package diagram, select EE@
ProblemDomain from the Package pick list.)

il &

Together will be able to use the description you
fill in when it generates documentation.

[¥] Include in current disgram

If you clicked include in current diagram, the _ . :
ProblemDomain package diagram should show Disgram name: |Request Reservation
anode that is a shortcut to the activity diagram.

Package Name: proglemDormain i
-%.. I [include in current disgram
Request Reservation Description:
[Thiz diagram dezcribes how a reservation fequest iz handled, including checking availakilty and possibly izsuing fied
@ ticket, -

Press Ok to create a new diagram.

| D%J| Cancel || Heli
4

http://localhost/3activitydiagrams.html (2 of 9) [5/3/2001 3:48:50 PM]

Together Tutorial -- Part 3
Y ou will find the following eight activity diagram toolbar buttons useful for the steps on this page.

m Swimlane * Transition

s Start o Horizontal fork
@ Stop =B Vertical fork
O Activity £ Decision

Organizing activities, start and stop states with swimlanes

Let's divide making a request into three pieces.
« Airplane/Flight Description for the capacity of the airplane
« Flight Reservationsfor thelist of reservations on this flight
« Reservation/Ticket Servicesfor creating reservations and issues tickets

Keep in mind that the swimlanes are often not associated with classes or objects -- especially since business modeling frequently precedes class diagram design!
Step: Make three swimlanes in the diagram.

1. Airplane/Flight Description on the left

2. Flight Reservationsin the middle

3. Reservation and Ticket Serviceson theright.

To create a swimlane, click the swimlane button (em) on the Diagram toolbar, then click the
diagram. SwimLane1|

Y ou can change a swimlane name by clicking on the name to bring up the in-place editor. [}S

ReservationTicket Services| |

The resulting diagram is pretty ssmple at this point.

http://localhost/3activitydiagrams.html (3 of 9) [5/3/2001 3:48:50 PM]

Together Tutorial -- Part 3

AirplaneiFlight Description Flight Reservations ResemvationiTicket Services

[Step: Put a start state at the top of the activity diagram (above the swimlanes) and put a stop state below the swimlanes. |

This step is easy: click start-button then click diagram; click stop-button then click diagram.

Creating activities and transitions

Theinitial activity for the activity diagram will be receiving a reservation request.

Step: Create an activity named Receive request and put it inside the Flight Reser vations swimlane. Link the start to the activity
with atransition.

Creating activities on activity diagrams is analogous to creating use cases on use case diagrams. Start with the activity
button on the toolbar ({J). Y ou can move activities around. Y ou can edit them with the in-place editor. ?

Activity diagram transitions are analogous to use case diagram communications. When you click the toolbar transition

flight Reservations
button (‘)l), Together puts halos around potential sources and targets for the transition as you pass the cursor them.

]
@Jjeceive Reguest))
o

At the right is a snapshot of making the transition from the start point to the activity.

Step: Create afive more activities:
1. Get capacity (cap) -- Airplane/Flight Description swimlane
Get #tickets -- Flight Reservations swimlane
Create reservation-- Flight Reservations swimlane
Refuse request -- Flight Reservations swimlane
| ssue ticket -- Reservation/Ticket Services swimlane

gk~ DN

The Ctrl+click technique works for creating multiple activities the same as for creating multiple use cases. When you Ctrl+click the button to place a new activity

http://localhost/3activitydiagrams.html (4 of 9) [5/3/2001 3:48:50 PM]

Together Tutorial -- Part 3
on the diagram, you can edit the activity in place and then click again to create another new activity.

Once you create an activity, you can drag it to any swimlane (or even outside swimlanes entirely).

Changing flow of control with forks, joins, and decisions

Before our airline can make areservation, it checksto seeif the flight has room. That's where the business rule comes in. Get capacity and Get #tickets can be
performed in either order. But they both have to be completed before the remaining activities can begin.

Step: Create afork. Make atransition from Receive request to the fork. Then make transitions from the fork to Get capacity
and to Get #tickets.

The fork buttons on the diagram toolbar give a choice of horizontal forks (&L) or Plane/Flight Description \l‘, Flight Reservations
vertical forks (g). Which you choose depends only on how you want the diagram to (Receive request)
look.
A fork can be asource or atarget of atransition (). (Get capacity (cap) }

[cet#tickets)

Besuretolook for the halo when you draw a transition to afork. Forks are so slim that it is easy to miss atarget fork and land on a swimlane instead. If you
try to end atransition on adiagram entity that isnot avalid target, Together writes ared error message in the Message pane, and it displays an error box like the
one below.

o x|

e Tran=ition can be dravwen to any Statef&ctivity diagram element except Start state, Swim lane and Object

2k

[Step: Create ajoin. Then make transitions from the Get capacity and to Get #tickets to thejoin. |

Thejoin button is the same as the fork button. Y ou can choose either the horizontal or vertical version. Again, which you choose depends only on how you want
the diagram to look.

Step: Make a decision node to compare the number of tickets to the capacity of the airplane. Make a transition from the join to
the decision. Then make a transition from the decision to Create reser vation and another transition to Refuse request.

http://localhost/3activitydiagrams.html (5 of 9) [5/3/2001 3:48:50 PM]

Together Tutorial -- Part 3

The decision button is the diamond () on the To get the snapshot on the left, we set our Diagram Options to show rectilinear links. The options can
diagram toolbar. be set from the Main menu under Options|Diagram.

Diagram Options: Request Reseryation e : _::_-gj
(Diagram | Database | iew Managemert | Print |

[Mame

C Create regewatlnn) i+ LE":.-'I:IL,IT
Maximum weicth of claszes | interfaces and packages Rectilinear

C Refuse request) o

The transitions out of the decision will be complete when they're labeled with guard conditions to indicate which transition applies.
Step: Put guard conditions on the transitions out of the decision as follows:
« #tkt < conthetransition to Create Reservation
« #tkt >=c onthetransition to Refuse request

Set the requirement type to business rule. And fill in a descriptive comment to be used later for project documentation.

Transitions have inspectors that you can access from their speedmenus. Right
click on the transition line and you'll get the properties inspector at the right.

Properties of (transition link) . ' x|

(Link rmﬁaevq_:_mah |’Hmuam rﬂggwémem:a"]

Mame | Walue |
cliert Detisio bl

EY Properties... [% Aft+Enter

zupplier
Rename Fz :

event name

event argumerts

guard condition Mkt = cap

Delete Delete

action expression

Scroll to Zource

zend clause
=croll to Destinstion !

zend time G
The link propertiesinspector has a Link tab with atextfield for the guard FEERILEY ___
condition. The Req tab has atextfield for business rules. The Description tab conztraint -
has a textbox for descriptions.

@ Press Cirl+Enter to finish editing and close Inspector
A

http://localhost/3activitydiagrams.html (6 of 9) [5/3/2001 3:48:50 PM]

Together Tutorial -- Part 3

Step: Put in a second decision. Make four transitions:

from Create reservation to the new decision.

from the new decision to | ssue ticket. Put a guard condition on the transition: ticket now
from the new decision to stop. Put aguard condition on the transition: ticket later

from Refuse request to stop.

from Issueticket to stop.

akrowDdE

Guard conditions appear on the diagram in square brackets. Y ou can change a diagram by dragging guard conditions or
activities.
- — - = =

[
;[#tk‘td cap]

1
---F--u

(Create reservation

Below is apicture of our completed activity diagram.

http://localhost/3activitydiagrams.html (7 of 9) [5/3/2001 3:48:50 PM]

Together Tutorial -- Part 3

PlanesFlight Description Flight Rezetvations RezervationTicket Services

Q Feceive request _)

(Get capacity (cap) L

(et # tickets)

[#tht == cap] Z [#tkt = cap]

Q Create rezervation _)
E Fefuse request)

[ticket later]

[ticket m

Ny
|zzue ticket)

e

Tipsand Tricks

Activity diagrams are fancy flow charts. Use them to spell out the details of potentially complicated or arcane business rules.

Together makes no direct connection between code and activity diagrams. Activity diagrams are useful for sketching out the flow of activities. They need
not spell out exact messages, message sequencing, or control structures.

When Together cannot determine where you want atransition to end, it will put up a"Choose Destination” dialog box giving you a choice of possible
endpoints.

The Options|Diagram command on the Main menu lets you change the links from rectilinear to direct.
Almost al diagram elements have speedmenus. Access to a speedmenu is always the same -- right click on the element.
The speedmenu for atransition can be accessed through the transition or any diagram annotation on the transition (such as a guard condition).

| <— PREVIOUS | TOP4 | NEXT—> | START HOME|

http://localhost/3activitydiagrams.html (8 of 9) [5/3/2001 3:48:50 PM]

Together Tutorial -- Part 3

Copyright © 2001 TogetherSoft, Inc. All rights reserved.
Last revised: Thu, Apr 12, 2001

http://localhost/3activitydiagrams.html (9 of 9) [5/3/2001 3:48:50 PM]

Together Tutorial -- Part 4

Together Tutoria
Part 4: Diagrams and Classes

We have already created a new project and organized our work with packages. And we've sketched out some requirements with use cases. In this section, welll
put some flesh on the problem domain package by creating classes.

Some of the tasks for this section are designed to illustrate Together's LiveSource™ aways-in-sync technology. It's one of the hallmarks of Together that never
failsto impress. Have fun!

Contents:
e Creating new classes

o LiveSource™ technology

o Editing source code outside of Together
o Adding attributes
o Adding operations

o Changing class properties

e Tipsand Tricks

Creating new classes

Here are theinitial requirements of the airline project.
o Makeareservation.
« Buy aticket.
o Determineif aflight has room for more reservations.
« Findthetotal ticket revenue for aflight,

From those requirements, we came up with five problem domain classes. We've listed them here along with some of possible attributes and operations. Thisis
just astart. Aswe go along, we may find the need for additional classes and members.

(Class IFlightDescription |[ScheduledFlight |Reservation Ticket |Agent
Attributes|departureTime date name basePrice [name
arrival Time
origin
destination
capacity
Methods [getCapacity() makeReservation() iticketPurchased() |cal cPrice() makeReservation()
setCapacity() numberOf Tickets() [cal cPrice()

You'll want to begin your work by bringing the ProblemDomain package into focus in the Diagram pane.

http://localhost/4classes.html (1 of 10) [5/3/2001 3:48:53 PM]

Together Tutorial -- Part 4

Step: Create five classes in the ProblemDomain package: FlightDescription, ScheduledFlight, Reservation, Ticket, and
Agent.

Ctrl+click the class button on the Diagram toolbar ([£]) to create multiple classes. Name the classes in the diagram as you go along. There's no need to write any
class declarations -- Together generates them automatically.

Asyou create the classes in the Diagram pane, the Editor

pane displays the new code rEZE =defautt= |/EE ProblemDomsin |

FlightDescription

2]

If you go to the <default> diagram, you'll see that the

ProblemDomain package now shows the new classes.
Changes in one diagram often create changes in related
diagrams. Ticket

ScheduledFlight

Below isapicture of the ProblemDomain package node. E
The + beside each name indicates that the class is public.

Agent

—I Reservation

ProhlemDomain

+FlightDescription
+3cheduledFlight
+Agent

1]

| b

+Reservation S Generated by Together *7
+Ticket

[o

package ProblewmDomain:

public class Agent |
!

-1| |:5:E:E:E:}:E:E:E:E:E:E:E:E:E

| »

b o [

Agert java

Together has now generated source files for the classes in the physical directory of the package. The Explorer Model tab tracks the new classes as part of the
current project.

Note: While this project won't have any inner classes, they're easy to create. Simply drag one class inside another. Or you can click the class button from the
toolbar and then click inside the outer class on the Diagram pane.

LiveSource™ aways-in-sync technology

Together uses your source code to construct its diagrams. It does not keep arepository. When you make legitimate code changes, the diagram shows those

http://localhost/4classes.html (2 of 10) [5/3/2001 3:48:53 PM]

Together Tutorial -- Part 4

changes... and vice versa. In this section and the next, we'll show you how to change some elements of your project just to see Together's LiveSource™

technology at work.

[Step: Use the Diagram pane to rename the ScheduledFlight class to Flight.

Use the class speedmenu to change a class name. Or simply double-click on the namein
the Diagram pane.

Together updates code, filename, and diagram.

AF Genarated by Together £7°

[» o

package ProblemDomain:

public clasz Flight {
!

4 [

b A [

| Flight java

i Flight
| =T At butes

]
I
I
I
| [E] Coemdions %—-

If you open the <default> diagram, you'll
see that Together has updated the class
name in the ProblemDomain package
node.

il

ProblemDomain
+FlightDescription
+Flight
+hngent
+Fesearvation
+Ticket

[Step: Use the ProblemDomain speedmenu in the <default> diagram to rename ProblemDomain to AirlinePD.

Use the ProblemDomain speedmenu in the <default> diagram to rename the package. The snapshot below points out four changes that Together makes as a

result. The Explorer Directory tab shows that the physical directory is renamed as well.

http://localhost/4classes.html (3 of 10) [5/3/2001 3:48:53 PM]

Together Tutorial -- Part 4

= B8 airline
[+ Diatabdanagement

= AirlineP
22 AjrlinePOr
'%, Request Rezervation
'ﬁ‘ MakeRezervation
Agent

Flight
FlightDe=scription
Reservation

Ticket

Lzerinterface

B zdefault=

Explorer model elements

MMrEsEEEEE

+

+ [#

*

o e

* N N

r 29 chefautts |/ AitineRD |

tab label Eess
—I package node —I 2]
Al I'i{;D DataM mt
irine AUserinterface dnlanageme
+FlightDescription Ul
L e =
| 4 | :f:f:3:3:1:1:1:3:3:1:1:3:3:1:f:f:f:f:f:f:3:3:1:1:1:3:3:1:1:3:3:1:1:1:3:3:1:1:3:3:1:1:1:3:3:1:1:3:3:1:1:1:3:3:1:1:3:3:1:1:1:3:3:l | 4 |

F% Generated by Together */]
package AirlinePD; € Java package declaration
public class Flight | L

| b

Flight java

Editing source code outside of Together

Together does not force working in a particular fashion. You can edit al of your source code in your favorite editor at the same time you manage your project

within Together.

Tool=

Cualty Assurance

Edit Code Template. ..

External Editar %

The Tools|External Editor command on the class speedmenu gives
aquick way to open the source file in an external editor.

Y ou can get to the class speedmenu through the Diagram pane or
Explorer pane.

|;Step: Open FlightDescription.java in an external editor. Add two String fields, origin and destination, and then save thefilein

he editor.

Notepad is the default external editor for Windows. (That's easy to change in the Project options. Look at the Tools menu.)

http://localhost/4classes.html (4 of 10) [5/3/2001 3:48:53 PM]

Together Tutorial -- Part 4

We opened FlightDescription.java in Notepad and entered the origin and destination declarations.

FlightDescription

-origin:String
-destination: String

When we saved our source file in Notebook, Together updated the
diagram. Together also updated the source filein its Editor pane view.

Together updates its Editor and Diagram views when the time stamp on
asource file changes.

= Flighl:Descriptiun.jav-a’i'._-_. -0 x|
File Edit Format Help
A% Generated by Together #/ -

package airlinerD;
public class FlightDescription {

priwvate string origin;
private string destination; .

}
i ﬂ

Adding attributes

It is often quickest to add membersto a class through its Diagram pane node.

[Step: Go to the Diagram pane to add a name (type String) to Reservation.

To add anew attribute to a class, select the class in the Diagram pane and choose New|Attribute from the class speedmenu. (Or simply use the keyboard

shortcut, Ctrl+A.)

Reservation
-attribite :inﬂ |

Resernvation

]name:Etring|

The new member gets a default name (attribute), type (int), and visibility (private). Y ou can immediately change all those by
in-place editing on the diagram node. (Selecting the member on the diagram then clicking on it activates the in-place editor.)

If you fill in just a new name and press Enter, then the name changes but the default attribute type (or operation return type)

and visibility level remain.

Of course, Together keeps diagram and code in sync, automatically adding the declaration to the source code. The snapshot

below shows the resultsin the Editor pane.

public class Reservation !
priwvate 3tring hame;

*
F

T

| »

| Fezeryation java

There are several ways to add attributes to a class through the Diagram pane.
« If aclassaready has an attribute and you want to add more, select the attribute and then press the Insert key.
« If aclass has an attribute that you want to duplicate within class, select clone from the attribute speedmenu and then edit the result.

http://localhost/4classes.html (5 of 10) [5/3/2001 3:48:53 PM]

Together Tutorial -- Part 4
« Select an attribute and copy it viaits speedmenu. Then paste it into another class using the speedmenu for that class.

« Move an attribute from one class to another using drag-and-drop. When you drag the attribute to a valid destination class, you'll see a blue halo around

the class.
« Copy an attribute from one class to another through Ctrl+drag-and-drop.

Y ou can drag-and-drop attributes within a class to reorder them.

Step: Edit three properties of the name attribute of the Reser vation class.
1. Initialize the value to the null string.
2. Set the "requirement description” to Last name first.
3. Set the author to your name.

The snapshot below shows that editing attributes can generate Javadoc comments as well as code.

Y ou can edit class member properties through their inspectors. (You

: o kage AirlinePD;
need to select the class member and not the entire classin this case.) ERERNEE R

. Set theinitial value of an attribute on the Propertiestab of the public class Reservation |
Inspector. S
« Set requirement types and descriptions on the Req tab. * @description Last name first
Once you've completed the edits, press Ctrl+Enter. This saves the : Remkine dhwe LR
changes and closes the inspector. 4
briwate String name = 77

[» o

 EmmmmE

| Reservation java

Step: Put additional attributes in the five AirlinePD classes. Use the Diagram pane rather than the editor to enter the new
attributes.

1. Agent: name (copy it from the Reservation class)

2. FlightDescription: departureTime, arrivalTime (Wait on capacity for the next section.)
3. Flight: date

4. Ticket: basePrice

Together puts vertical scrollbars on class nodes in the Diagram pane that are too small to show all of their members.

Y ou can resize a class node by grabbing the handles around its border and dragging. Invoking "Actual Size" from its speedmenu
auto-resizes the class node and displays all members.

Want to change the ordering of class members? Use drag-and-drop to reposition them.

http://localhost/4classes.html (6 of 10) [5/3/2001 3:48:53 PM]

FlightDescription

-origin: String t
-destination: String
-deparntureTime:.Datr =

Together Tutorial -- Part 4

Adding operations

The same techniques for adding new attributes apply to adding new operations. The keyboard shortcut is Ctrl+O.

Step: Add anew void operation named makeReser vation to the Flight class. Give the operation two parameters. a String for
he name of the passenger and an int parameter for the kind of ticket.

The in-place editor for an operation on a diagram node takes input in UML style (type follows name) or Java/C++ style (name follows type). The table below
illustrates the difference.

Style Format Example

UML name(parameters):type | myM ethod(myParameter:int):double
JavalC++ | type name(parameters) | double myMethod(int myParameter)

The default visibility for attributesis private. The default visibility for operationsis public. Y ou can change the visibility of a member with the in-place diagram
node editor, in the inspector, or in the source code.

[Step: Use the Diagram pane to copy makeReser vation() from Flight to Agent. |

To copy an operation from one class to another, use Ctrl+drag-and-drop or "Copy" from the operation speedmenu and "Paste” from the speedmenu of the target
class. The Diagram pane copy duplicates the entire operation from one class to another, including its body.

Step: Add these operations to the Reser vation class.
« constructor with a String parameter and an int parameter
« ticketPurchased() returns a boolean
« calcPrice() returnsadouble

The class speedmenu has a New|Constructor command that you can use to create the Reservation constructor.

Attribute CHrl+A
Y ou will eventually use two other items on this speedmenu: New|Property and New|Member by Pattern. (The snapshot Operation CtH+O
shows that it is possible to create inner classes via the speedmenu. Y ou can do the same thing by dragging a class inside the oreia
intended outer class.) %
Propert Cirl+B

fember by Pattern...

Inner Class

Step: Add these operations to the Flight, Ticket, and FlightDescription classes.
o Flight - number OfTickets() returns an int
o Ticket - calcPrice(). Copy it from the Reser vation class.

Together treats attributes with corresponding getter and setter operations as properties.

[Step: Use the FlightDescription speedmenu to add capacity as a property. |

http://localhost/4classes.html (7 of 10) [5/3/2001 3:48:53 PM]

Together Tutorial -- Part 4

Begin this step by selecting Property from the class speedmenu. it T ATEED

When you create a property, Together automatically creates getter and

setter methods along with the code for their bodies. public clazs FlightDescription |

public int getCapacity(){
returil capacity;

The snapshot here shows the result of changing the default name from
property to capacity. Together makes several code changes:

« The name of the getter changes to getCapacity.
« Thereturn statement returns capacity (rather than property). public woid setCapacity(int capacity)!
« The name of the setter changes to setCapacity. this.capacity = capacity;

« Thebody of the setter assigns to this.capacity.

1]

b o [
—LFIigHtDescriptiDn.java |

Together recognizes classes with gettersor | The Options menu has a check box to turn on/off JavaBean When you check Recognize JavaBeans off,
setters as JavaBeans. recognition. the properties appear as attributes and the
getters and setters appear as operations.
[J FlightDescription Optioris
_origin:sting | L FlightDescription
-destination: Strin Project... -capacityint]
-departureTime:l Dicgior -arigin:string
— s Tiveo: Diate [Tl ; -destination: String
— S -departureTime:Dat =
capacityint Default Tool Integration... -artivalTime Date B
Cisgram Wiewe Management ... +petCapacity(int E
A JavaBean diagram node has a o . ¢ — < +§etCapacigg:a i =]
characteristic tab on the upper |eft. Getters EHEE B 8 il
and setters do not appear among the M L= Recognize Java Bears
operations. And the property attributes o 65 : _ Q
move from the attribute compartment to a g EROREE S R REe S
properties compartment at the bottom of Activatable Modules b
the class diagram.
Reload

Properties and attributes have different speedmenus. Before trying the next step, make sure that Recognize JavaBeans is turned off.

[Step: Use the capacity speedmenu to initialize it to 50. |

Right click on a class member to get the speedmenu for the member (not the speedmenu for the class). The Properties tab of an attribute speedmenu has an
initial value field.

http://localhost/4classes.html (8 of 10) [5/3/2001 3:48:53 PM]

Together Tutorial -- Part 4
Changing class properties (aka color me pink -- or blue or green or yellow)

Step: Change the Ticket class:
1. Make Ticket an abstract class.
2. Make calcPrice() an abstract method.

shatract Y Ou can make a class abstract by using its speedmenu or its property inspector. Check the Abstract box on. Use the same procedure to make
% amethod abstract.

Your Ticket node should now display its name and method in italics (as specified by the UML).

The class inspector can add a huge variety of model richness. The inspector is organized by tabs. Together translates some of the tab items into source code
(such as determining class visibility or setting the class node to be an interface). It translates other tab items into Javadoc comments within the source code
(such as those on the Javadoc and Description tabs).

[Step: Give Flight the "moment-interval” stereotype. |

The Properties tab of the class inspector has a stereotype field with a pull-down list. Moment-interval is one of the color stereotypes featured in Java Modeling
in Color with UML by Peter Coad et al.

Together colors anode with a"moment-interval” stereotype pink. Your Flight node should be pink. e e T

The pink color is acharacteristic of both "moment-interval” and "moment-interval-detail” stereotypes. The "role" Flight

stereotype is yellow; "party", "place”, and "thing" stereotypes are green; and the "description” stereotype is blue. -date:Date

Together does not limit stereotypes to the choices in the pull-down list ... you can type in anything you want. And you +makeReservationiname:String
can customize your stereotype to your own color viathe class inspector View tab. +nurmberOfTicketszint

Step: Add color stereotypes to the rest of the classes:
« FlightDescription: description
« Reservation: mi-detail (moment-interval detail)
o Ticket: thing
o Agent:role

When you finish with that last step, your diagram ought to come alive in four colors!

Tipsand Tricks
« Keyboard shortcuts make adding new class members speedy -- Ctrl+A for attributes and Ctrl+O for operations.
« You can move amember from one class to another merely by dragging it from one class node to the other.
« You can copy amember from one class to another by Ctrl+dragging it.

« Attributes and operations appear in a diagram node in the same order that they appear relative to each other in the code. Y ou can change the position of a
member by dragging it within the node.

« If you change aclass or package name in a diagram, Together will change the file names and package statements accordingly. If you change a class name

http://localhost/4classes.html (9 of 10) [5/3/2001 3:48:53 PM]

Together Tutorial -- Part 4
in the editor instead, Together assumes you are the expert responsible for changing the corresponding file names and package statements.

« You caninitialize an attribute by editing the source code or by specifying an initial value in the attribute's properties inspector.

« Most activitiesin Together can be done in different ways. For example, you can enter a property through the class speedmenu, by adding the attribute and
then the getter and setter operations, or by editing the source code directly.

| <= PREVIOUS | TOP4A | NEXT—> | START HOME |

Copyright © 2001 TogetherSoft, Inc. All rights reserved.
Last revised: Thu, Apr 12, 2001

http://localhost/4classes.html (10 of 10) [5/3/2001 3:48:53 PM]

Together Tutorial -- Part 5

Together Tutoria
Part 5: Classes and Associations

In the previous part of the Together Tutorial, you created some classes. But it's a pretty weak class diagram that has no associations. In this part, you will
remedy that. You will create associations linking the five classes that you've created so far. Y ou will l1abel some of the associations and put on multiplicities.

At the end of this part of the Tutorial, you will create an interface and two subclasses. And you'll connect them to existing classes via generalization and
implementation links.

Contents:

Creating associations

M odifying associations

Changing alink to an aggregation

Showing inheritance relationships

Creating and implementing interfaces

Adding notes to diagrams

Tips and Tricks

Creating associations

You'll be working in the AirlinePD package. Open its diagram in the Diagram pane.

[Step: Create an association from Flight to FlightDescription. |

Begin this step by clicking the association button (/") on the Diagram tool bar.

Associations are handled the same way as linking elements in other diagrams. As ddmnmer?t-intewalbr

you pass the cursor over valid client (start) and supplier (end) nodes, Together puts <<description== L= Flight

ahao around them. FlightDescription / -date:Date

Drag the cursor from Flight to FlightDescription and release. The Diagram pane -capatityint=50 =1 +makeReservationiname String
will show the new association as ablue line. _arigin:String %ﬁ +hurnberOfTickets(int

If you look in the Editor after creating the association, you'll see that Flight has el P

member named InkFlightDescription. +yetCapacity(yint

Note that InkFlightDescription does not appear in the Flight node of the Diagram pane. Together considers any attribute whose name begins with Ink to be an
"Automatic” link, and it will not show it in aclass node of the Diagram pane unless you reset the diagram options. (If you want the new link member to show as
an attribute, you can change its name to begin with something besides Ink.)

Step: Create two more associations:
1. From Reservation to Ticket
2. From Agent to Flight

http://localhost/5associations.html (1 of 6) [5/3/2001 3:48:55 PM]

Together Tutorial -- Part 5

Together gives a choice of link display:
« rectilinear: the link is a sequence of horizontal and vertical line segments.
« direct: thelink isaline segment, but it may be slanted. (The link may also be a sequence of line segments with any slope).
Link displays are set on the diagram options, accessible via Options|Diagram on the Main menu.
Most links go from one class to another. But some can be self-links, starting and ending at the same class. Y ou can put a self-link in our model to distinguish
between aflight plan and an actual flight.
[Step: Make the diagram link display to be Direct. Then draw a self-link on Flight. |

Below is a snapshot of the diagram so far.

==smmament-interdal==
==description== Fligght
FlightDescription -date:Date ==thing==
-capacittin=s0 - +makeReservationinarm Ticket
-origin:String £3 +nurmberOfTickets(int -baseFrice:double
+getCapacity)int +caicPrice) doubie

==rglp==

Agent ==mi-detail==
-name:string=null Reservation

+makeReservation{name:String, tkil -hame:String=null
+Resemnation{String:name tkind:int)
HicketPurchasedihoalean
+ralcPrice:double

Modifying associations
Association links are Together objects with their own speedmenus and inspectors. For many modifications, you can use either speedmenu or inspector.

Step: Put cardinalities on the link from Flight to FlightDescription.
« 0.* at theclient end (Flight)
« 1 at the supplier end (FlightDescription)

http://localhost/5associations.html (2 of 6) [5/3/2001 3:48:55 PM]

Together Tutorial -- Part 5

The link speedmenu varies according to which end is closer to the cursor. To target the end of alink in order to assigniit a AU SRATTIeY
cardinality or arole, right-click on the link near that end. 50 [
The speedmenu lists the most commonly seen cardinalities. Frequently you can select the appropriate cardinality without +makek

going to the link inspector.

Step: Assign appropriate cardinalities to the ink connecting Reservation and Ticket using this rule;
A ticket must be associated with exactly one reservation, but some reservations may not have any tickets.

Assign cardinalities on the link from Agent to Flight using this rule:
An agent may know about many flights; a flight may be known by many agents.

The link inspector has arich menu for modifying links. Useit to assign rolesto thelink endsand to make "y oo Automatic adl
the link directed. |
b Ltomatic
irected
Cirl+Enter applies chan) o -irected [%

Step: Assign arole and 0..1 cardinalities to each end of the self link on Flight and make it directed. Then name the ends:
« Namethe supplier role "actual."
« Nametheclient role "plan."

For that last step, use the inspector for the Flight self link.

Changing alink to an aggregation

Every Flight has a collection of Reservations rather than just a single Reservation.

[Step: Make an aggregation from Flight to Reser vation. |

Thisisan easy step. Create the association, starting at Flight and ending at Reser vation. Then bring up the speedmenu of the new association and
check the Aggregation box on.

Thelink should now show with adiamond at the Flight end.

Making a new association has the potential of cluttering the diagram. Y ou can get Together to rearrange the diagram with the diagram speedmenu (L ayout|All).
Or you can simply tweak the link directly.

When you select alink, the cursor changesto a cross (—|—). Moving the cross reshapes the link. If you move the cursor to an end of the link, the cursor changes
shape to a 4-ended arrow(4$>). At this point, you can move the endpoint of the link to a different class.

Showing inheritance relationships

Y ou will now extend two concrete classes from Ticket, which is an abstract class. Y ou'll also make an interface for the Agent and Reservation classes.

http://localhost/5associations.html (3 of 6) [5/3/2001 3:48:55 PM]

Together Tutorial -- Part 5
Step: Create a class named Coach. Then complete these steps.
1. Link Coach to Ticket as ageneralization.
2. Copy calcPrice() from Ticket to Coach.
3. Copy calcPrice() from Coach to Reservation.
4. Change the Coach stereotype to "thing."

Use the Generalization link button (/) to make Coach extend Ticket. When you copy the abstract operation to a concrete class, Together will make the copy
concrete in both the diagram and the source code.

[Step: Make a copy of the Coach class and rename the copy FirstClass. |

Y ou can make a copy of aclass using the Copy command on the class speedmenu followed by the Paste command on the diagram speedmenu. The new classis
identical to the old one except for its name. All constructors are copied with the new name. All of the links that start at the original class are copied. And al
Javadoc comments in the code are copied.

Step: Clean up the diagram:
« Changethelinksto Rectilinear.
« Make the layout inheritance horizontal.

For diagram-wide changes such asin the last step, you'll need to pull up the diagram options window. Go to Options|Diagram on the Main menu.

Creating and implementing interfaces

For the final task, assume that both Agents and Reser vations need to be able to tell their names.

Step: Create an interface named | Named. Then complete these steps.
1. GiveINamed asingle operation, getName(), that returns a String.
2. Link Agent and Reservation to | Named.

The process for creating interfacesis identical to creating classes and packages. Just use the interface icon (f=]) on the Diagram toolbar instead of the class or
package icon. Y ou can edit the name in place. Notice that Together shows names and operations of interfacesin italics.

The generalization button also serves for showing that a class implements an interface. (A class implementing an interface must define the operationsin the
interface. Defer implementing getName() in Agent and Reser vation until we discuss patterns.)

Adding notes to diagrams

Y ou're almost finished with afirst crack at the airline project. But put in one more item before going on, a note to explain the business rule for making a
reservation:

"Y ou can make a new reservation on aflight if the number of tickets already sold is less than the flight capacity.”

[Step: Put anote on the AirlinePD class diagram to show this business rule. Then set the note type to business rule. |

http://localhost/5associations.html (4 of 6) [5/3/2001 3:48:55 PM]

Together Tutorial -- Part 5
Use the note button ([E5]) on the Diagram pane toolbar -- enter the text directly in the note

: e . : .) gr ties [Notel B X
node on the diagram. When you're finished, link the note to the Flight class via the note link roperties THEE — B
button (.+). rF'rl:anfties r‘«-“-iew rDescriptil:un |/I'-rtrnld-:u: rﬁ“eq |
Y ou can set the type of the note on the Req tab of the Properties inspector of the note, as ST | il | -
shown here on the right. type b =2
, . , _ number Business Rule
Below isasnapshot of our AirlinePD class diagram after we created the note. The links are e asd Q ks
rectilinear. The layout inheritance is horizontal . description £ e
document Froduct Requirement —
erformance é

Cirl+Erter applies changes and closes the Inspector

==description== ::mumerrtj|r|terval:~: Make & reservation only if the
FlightDescription Flight — — qnumber of tickets sold iz less
-capacity:int=50 = B 0.* | -date:Date than the plane capacity.
-origin: String it +imakeReservationiname:. = o
; ; = i
+yetCapacity(rint - +numberCfTicketsrint
plan
[EE 0.1 Hlisn:tual
==toles== ==thing==
Agent 153 Coach
+inakeReseryvatic ~ ==mi-cetail== e +eaksPrice() double
- Reservation :
| -mame; String Rk _T":Ht]
lr _____ +icketPurchazed() bodlean £l le s il _
interface | +Rezervation{name: String tkind:int) +ealclrice) doubie -:::'thmgb:
Named '{j +oalcPrice’) double — ALt
+gethamel)-String +oethlame) String +calcPrice): double

Tipsand Tricks
« Together will clean up diagram geometry when you select L ayout|All from the Diagram pane speedmenu.

« If you're unhappy with the any change, whether it's from moving diagram elements, creating or deleting elements, or changing code. Y ou can always use
the undo button. There are multiple levels of undo. And if you change your mind in the middle of an undo, click the redo button.

« The undo and redo buttons have flyovers that describe the action that will be undone/redone.

http://localhost/5associations.html (5 of 6) [5/3/2001 3:48:55 PM]

Together Tutorial -- Part 5
« Having trouble making a self link show on a diagram? Change the diagram layout from rectilinear to direct.

« |f you copy an operation from an interface or abstract class to a concrete class, it will be copied as a concrete method. If you copy a method from a class
to aninterface, it will be copied as a method declaration (with no body).

« If you want an association to appear in a class node, change its name not to begin with Ink. Alternatively, select Options|Diagram from the Main menu.
Then on the diagram tab, select Associations|Show as attributes|All.

« Toshow al links as directed, select Options|Diagram from the Main menu and then pick Associations|Draw Dir ected|All.

| < previous | Tor4A | NEXT—> | START HOME |

Copyright © 2001 TogetherSoft, Inc. All rights reserved.
Last revised: Thu, Apr 12, 2001

http://localhost/5associations.html (6 of 6) [5/3/2001 3:48:55 PM]

Together Tutorial -- Part 6

Together Tutoria
Part 6: Template Patterns

Patterns are perhaps the most powerful tool for code reuse today. Patterns can be used to create new classes or members. They can also be applied to existing
classes and members.

Together has two different kinds of pattern support: template patterns and "module” patterns. Templates are useful for smple classes as well as links or
attributes. Modules are typically used for more complicated design patterns such as GoF design patterns or Coad class patterns.

This part of the Together Tutorial will focus on template patterns. At the end, we will show how to create your own class template pattern.

Contents:
e Choosing class member patterns

o Applying patterns to links

Applying class template patterns

« Making your own template patterns

e Tipsand Tricks

Choosing class member patterns

There are two built-in class member patterns. Stub Implementations and Properties. Stub Implementations put dummy return statements in non-void operations.
Properties create attributes with getters and setters.

Step: Apply the Stub Implementation pattern to three methods:
1. Coach.calcPrice()
2. Reservation.ticketPurchased()
3. Flight.number OfTickets()

Then copy calcPrice() from Coach to FirstClass. (Don't change Reser vation.calcPrice(). We're saving the implementation of
fthat operation for later.)

http://localhost/6patterns.html (1 of 11) [5/3/2001 3:48:58 PM]

Together Tutorial -- Part 6

To apply the stub pattern, start with Choose Patter n from the operation speedmenu. vt o
Together will open a Pattern window that lists member and link patterns. The only choice for Fenerie AfsErter
operation patternsis Stub Implementation.
Fename F2
The editor will show the result.
Choose Pattern.... [} Crl+ R
public class Coach extends Ticket [:- Cut R i
public double calcPrice() ! [l Co
; oy
S Write your code here = Eﬂﬁﬂﬂ
Clone = <= member
return 0;
' e _ Stuk Implemertstion
; i Msin method
- - = link

Coach java |

Step: Apply the Property pattern to Reser vation.name() and Agent.name(). Give each property a get method but not a set
method.

Again, start with the member speedmenu to apply a pattern. When you select Properties from the list of patterns, the right side of the Pattern window lets you
change the Name, the Type, and whether the property has a getter, setter, or attribute.

http://localhost/6patterns.html (2 of 11) [5/3/2001 3:48:58 PM]

Together Tutorial -- Part 6

Patterns - -1~ Parameters = i

= Patterns b hlatme Walle
= <= member L it .

Type s Jang . String

Main method
=1 =] link
F E] JEL 5.1 containers
F E] Robustness
F E com.sunjava.uti.collection
F £ java.util collections (JDK 1.
Aggregation az Comment
Aoggregqation az Wectar
Aszociation a3 Comment
[ieFHCIENan, a5) eclor +Resenation{hame:Strin
Composition &s Comment | +ticketPurchased(:bools
Defauftsogregation = +calcPriced:double
s (LR8I +gethamel:String

Zet method [¥]
Set method |
Aftribute [1]

==mi-detail==
Reservation

If you change the text in the Name textfield, Together will change the name of the attribute and methods. If you uncheck the Attribute box, Together will
remove the attribute altogether.

If you want to create an new property from scratch rather than use an existing member, use the Member by Pattern option on the class speedmenu.

Applying patternsto links

http://localhost/6patterns.html (3 of 11) [5/3/2001 3:48:58 PM]

Together Tutorial -- Part 6

LR RE Tl To theleft isthe part of the AirlinePD class diagram showing the association from Flight to Reservation. The UML
i diagram shows only that the association is an aggregation. The diagram reveals nothing about the actual implementation.
19 Is the aggregation coded as a collection, an array, a vector, a hash table?

-date:Date

+makeReserationinanm It is up to the programmer to choose the appropriate code. Link patterns give some help.

+numberOfTickets(:int [Step: Apply the Aggregation as ArrayList pattern to the link from Flight to Reservation.

There are two ways to use a link pattern:
1. For an existing link, select Choose Pattern from the link speedmenu.

T 2. If thelink does not exit, create alink by pattern. The link by pattern button (4%) is on the Diagram toolbar.

Reservation In both situations, Together brings up the Association Pattern dialog box.

+Resemnation{String:name,l :_t!
+ticketFurchased(:hoolear =

The Pattern selection pane of the dialog box lists many link patterns. For the last step, select Association as ArrayList from java.util collections.

Patterns : Parameters
= Patterns . Mame | Walle
[[JGL 3.1 containers Maitme InkReservation
+ [Robustness |
B com.sun java.uti collections (JOK 1.1) =% ||| Link destination :AirlinEPD.Heserva’ciDn
= = java.util collections (JDK 1.2
Aggregation as AhstractCollection
Aggregation as Abstractlist
Agoregation az Abstracthiap [Preview -
Aggregation as AbstractSequentiall : I
Aggregation as .":'«bStFR?E'ESE‘t - salink aggregstion
WBogregstion as ArrayList| t mazsociates <{AirinePD Reservation =
Agogregation as Arrays T
Aggregation az Collection =" | private java.util ArrayList InkReservation;
NEE | e

The preview panel on the Association Pattern window indicates the code that Together will generate in the Flight class. (The actual code has an import
statement rather than fully qualified ArrayList type name.)

Applying class template patterns
It'stimeto create aDriver classwith amain method. The Driver class belongsin the User I nter face package instead of AirlinePD. Before starting the next

http://localhost/6patterns.html (4 of 11) [5/3/2001 3:48:59 PM]

Together Tutorial -- Part 6
step, open User Interface in a new tab.

[Step: Create a shortcut (alias) to the Flight node in the User I nter face package diagram. |

Start this step by going to the model view of the Explorer. Expand AirlinePD, then bring up the

Flight class speedmenu. Select Add as Shortcut. oY
. . : & [fn |
Tl The UserInterface dlag_ram will show a new node, with £ E]_I _
i ; the shortcut symbol (#) in the lower left corner. = B sirline
AirlinePD.Flight = B AirlinerD

-date:Date The Explorer pane shows the shortcut also. Look for a B9 airlinePD
+makeReservation(narne: String. tki Flight class with a shortcut symbol under User I nterface. L, Request Reservation
+numberOfTickets(int H E] Agert

L [+ Cosch

[+ Fir=tClass

m & Fiight,

[+ Fligght Open Diagram
[E IMarns :
[+ Fesze
E Ticket My
[E] Datahans add a5 Shortout 1.
& Uzerinter b
P cdefautts Froperties... Alt+Enter
[Step: Create aDriver class using the Main Class template. |
The Class by Pattern button (E8) is on the Diagram toolbar. (The three
,_mmm -Patterns - — Parameters
dots at the bottom characterize pattern buttons.)
= Patterns Mame | Walue
Placing a Class by Pattern in the Diagram pane brings up a pattern window # B Coad Componerts e Driver
like the one shown here that we obtained. & El HP E Speak .
We selected the Main Class pattern, then changed the name from the f‘ S g':';d Hlanses
default Classl to Driver in the Name text field on the Parameters pane. e -
The Preview pane shows the code that Together generates. - £ EJB Client
F El J2es
[+ ;zzistness e
erviet public class Driver §
public static void mainiStringl] argy) |
Applet !
Exception i
Main Class
Reference HitpSer

http://localhost/6patterns.html (5 of 11) [5/3/2001 3:48:59 PM]

Together Tutorial -- Part 6

While the Main Class pattern may not seem like much of atime saver, some of the other choices might be more impressive.. For example, take alook at the
Bean, Applet, and Servlet class patterns.

[Step: Make alink from the Driver node to the AirlinePD.Flight node. Then rename the link as myFlight. |

\-/rir:/\t/lsaﬂ step has nothing to do with patterns, but something to do with = Reoue 31? ﬁ‘_é?_’?':‘?- ﬂifﬂ?li.‘.l._ rgg USI?F! r.|ter f-E.mE | | -.
B8 cdefaut= | 7 MakeReservation | BB ArinePD
To theright are the Diagram and Editor panes that we generated. There are W IR "]

two things to notice: . Driver 1
. . . Il [=] ARribetes J
1. When we created the link, Together put the appropriate import ! - '
statement in our code §- IyENgLElght b
) ’) : [F] Coemtions d
2. The Flight node does not show any of its members. | +maingargy.Stringvoid |
Y ou can hide class members on a diagram node via the node speedmenu. TE— rr g]
Lanout b
R_a,w ==mmomentintersal==
Hicle ¥ Class AirlinePD.Flight
0.1
Rename F2 ¥ Aftributes
: s o actual
el ﬁperaﬁnns LY
Wizibility p | [hiner Claszes M
[Abstract A
import AirlinePD.Flight:

L ¥ o

public clazz Driver {
public static woid main(3tring[] argw) {

H

For the Flight node, checking Attributes and Oper ationsis equivalent to
checking All.

4| [

private Flight myFlight:

[b

| Criver java

Making your own class template pattern

Java class templates reside in the Together home folder under templates/JAVA/CLASS. Each folder in that directory contains two files:
1. % Name% .java, which isthe template for the source
2. Folder Name.properties, which establishes the properties for creating code and documentation

Together 5.0 has a Code Template Expert for creating new templates or modifying existing ones. The Expert will automatically create afolder for a new
template, placing inside the two files listed above.

http://localhost/6patterns.html (6 of 11) [5/3/2001 3:48:59 PM]

Together Tutorial -- Part 6

[Step: Create an Exception template through the template expert.

Invoke the Code Template Wizard under the Main menu. Select Tools|Code Template Expert.

In the first two panes of the Code Template
Expert, select the Language, Category, and
New Template.
1. Pane 1. Select language and category
of desired code template.
Select asfollows.
Template Language: Java
Template Category: Class

2. Pane 2: Select the code template you
want to edit or create new code
template.

Click New Template.

Enter Exception in the dialog box, then click
OK. Together puts you back at the same
pane.

Choose Exception from the scrolling list.
Then click Next to continue to Pane 3.

Code Template Expert

v Select the code template you want to edit or create new code template

I Language - Java, Category - class

] EJB10

[+] EJB11

] EJB20

[# [EJB Cliert

E J2ee

[Robustness
Applet
Default Class
Default Einterface
Default Inner Class
Default Inner Interface
Default Interface
flain Class

| »

S H = FLHAE

Create new code template 1

Enter name of the new code template;

|Ex|:epti-:|n|

.

Cancel

= Previous

Mlext :%J | Finizt

Cancel

Help

an appropriate description for the dialog box.

Step: Fill in the Exception details, beginning with the template documentation. The default name should be Exceptionl. Create

http://localhost/6patterns.html (7 of 11) [5/3/2001 3:48:59 PM]

Together Tutorial -- Part 6

The snapshot at the right shows our template so
far.

1. Default name: Exceptionl
Unless we enter a different name, the
name of any new class generated by the
template will be Exceptionl.

2. Template description is documentation
for the template dialog box when the
Exception template is selected. (The
descriptionisin HTML.)

Code Template Experkt

v Setup code template properties and edit template code and description.

i Language - Java, Categary - clazs, Template name - Exception

Detault name:
Genetate prologue and epilogue:
Hidle in choose list:

Pazte all created classes to one file;

Template description;

Edit template text;

|E:x:n:eptin:nn1

[
[
[

A template for creating Jawva
Exceptions. in Exception will hawve two
COnsStructors.

Edit template code T

4

= Previous

Finizh

Cancel

Help

[Step: Fill in the template definition, and finish the templ ate.

http://localhost/6patterns.html (8 of 11) [5/3/2001 3:48:59 PM]

Together Tutorial -- Part 6

Pane 3 of the Code Template Expert has awindow for
filling in the code.

1. Fill inthe definition asillustrated here. Y ou can
click on the % Name% button rather than typing
in the 6 characters. (The text in the Name field
will replace the %Name% macro in the definition
when the template is used.)

2. Click Format Sour ce after entering the source
code.

3. Click OK when you are finished with the code.

4. Click Finish on the following pane to complete
your work.

i Edit code template - Exception B

public clazz ZName% extends Exception {
public ZName%:() !
¥

public (Name% (String msg)
Super (mag) ;

Format Source

x|
rhlacros
HMamett k
Wllazs_Mames
FUzerDefinedd
O Cancel Help
o

[Step: Create an Exception classin the AirlinePD package named Reser vationException.

http://localhost/6patterns.html (9 of 11) [5/3/2001 3:48:59 PM]

Together Tutorial -- Part 6
Go back to the AirlinePD package diagram to start this step.

When you click the Class by Pattern button (&) on the diagram
toolbar then the diagram, the pattern dialog box should show your
editing work. Select Exception as the pattern. The Description panel
has the HTML description from the propertiesfile.

Enter the name ReservationException in the textfield of Parameters
panel. The Preview panel will show the code that Together will
generate as aresult.

When you finish, the new Reser vationException node will appear on
the diagram.

Exception
ReservationException

+ResemnationExceptiong
+ResemnvationException{msg: Stri

Pattern

=

=
s

L

L

Patterns
E Coad Components
] HP E Speat| Parameters

E Coad Clas Mame Yalue

= GoF Marme ReservationException
£ EJB Client [E

Bean
JzP
Applet

Exception |
Main Class
Sarviet i Presvieswy

| public clazs ReservationException extends Exception {

public ReservationException) {

i

public ReservationException String msg) §
SUperimsy);
I
i

(KN E

(We suggested creating an exception for thisfinal set of exercisesin order to satisfy the business rule described in the activity diagram. When arequest for a
flight reservation is refused because the planeis full, Flight.makeReser vation() can throw a Reser vationException.)

http://localhost/6patterns.html (10 of 11) [5/3/2001 3:48:59 PM]

Together Tutorial -- Part 6
Tipsand Tricks
« Using the Diagram toolbar to create a class from atemplate is almost identical to using a speedmenu on an existing class or interface. With the
speedmenu, Together is often able to fill in aname from your existing code. (Using the Diagram toolbar is absolutely identical to using the Diagram

speedmenu to create a class, interface, package, or class by pattern.)

« Shortcuts are dliases for the real thing. Y ou can delete a shortcut from adiagram if you select it and press the Delete key. If you use delete on the shortcut
speedmenu instead, Together will remove the corresponding file (not just the shortcut).

« Itisaseasy to make new link templates -- or modify existing link templates -- asit is to create new class templates. The Code Template Expert will step
you through! Just select Link instead of Class on the Expert'sfirst pane.

| < previous | Tor4 | NEXT—> | START HOME |

Copyright © 2001 TogetherSoft Corporation. All rights reserved.
Last Revised: Fri, Mar 30, 2001

http://localhost/6patterns.html (11 of 11) [5/3/2001 3:48:59 PM]

Together Tutorial -- Part 7

Together Tutoria
Part 7: Refactoring with Class Patterns

In the previous part of the Together Tutorial, we discussed template patterns. It's time to consider the more complicated module patterns. The focus will be on
the Abstract Factory pattern, which is one of the 11 GoF patterns shipped with Together.

Together patterns are useful for automatic creation of code that is tedious to write. And they are also critical for refactoring code by reorganizing it. That is
exactly how you will use patternsin this section. But first, you'll start out with some unfinished business, coding our single businessrule.

Contents:
o Coding business rules

o Refactoring with a GoF pattern

« Putting the finishing touches on diagram and code

e Tipsand Tricks

GoF is an acronym for "Gang of Four." It refersto Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides, who are the authors of the classic book
Design Patterns, Elements of Reusable Object-Oriented Software.

Coding businessrules

Let's write some simple code to generate a sequence diagram from Flight.makeReser vation(). Our previous discussion on activity diagrams contains the
business rule that describes the code:

You can make aflight reservation if the number of tickets sold so far for the flight does not exceed the capacity of the airplane.

http://localhost/7classpatterns.html (1 of 8) [5/3/2001 3:49:00 PM]

Together Tutorial -- Part 7

%
FlaneFlight Description Flight Reservations Rezeryation/Ticket Services
(Receive request _)
(et capacity (cap) FE

(et # tickets _)

[#tkt == cap] [#tkt = cap]

(Create reservation _)
(Refuse request _)

lticket later]

[ticket m

iy
lzzue ticket _)

e

Below isour code for Flight.makeReser vation().

public void makeReservation(String name, int kind) throws ReservationException {
int t t hi s. number O Ti cket s();
int c | nkFl i ght Descri ption. get Capacity();

/'l Make a reservation only if the nunber of tickets sold is |less than the plane capacity
if (t <c) {

Reservation r = new Reservati on(nane, ki nd);

| nkReservation. add(r);

}

el se throw new Reservati onException();

}
[Step: Complete the coding of Flight.makeReser vation(). |

http://localhost/7classpatterns.html (2 of 8) [5/3/2001 3:49:00 PM]

Together Tutorial -- Part 7

You can do this step by copying and pasting from browser to Together. public void makeReservation (String name, int kind)

However, if you enter the code for makeReservation() by hand, you're g

likely to see the Together editor code completion at work. Snb st b er0ETicketa ()

This snapshot shows code completion for the expression int ¢ = lnkFlighthescription.

InkFlightDescription. & clone) Object ||

} =% equalziObject) boolean |
8 finalize () woid |
* getCapacity()

i getClazz() k Class =5
=y hashCode () int
by notify () volid s

The Reservation constructor is still just astub. Let's use its two parameters, name and tkind. The name s easy. But tkind takes some thought. For now,
simply go by this:
If tkind is 1, create a Coach classticket. If tkind is 2, create a FirstClassticket. Otherwise, do not create a ticket at all.

[Step: Fill in the code for the Reser vation constructor. |

Here is the code for our Reservation constructor.

public Reservation(String nanme, int tkind) {
t hi s. name = nane;

/1 W will refactor this next piece of code
| nkTi cket = null;
if (tkind == 1)
| nkTi cket = new Coach() ;
else if (tkind == 2)
| nkTi cket = new Firstd ass();

Refactoring with a GoF pattern

Look ahead now to atime when the airline project might be much more extensive. The code for determining which kinds of tickets are purchased lies
completely within the Reser vation constructor. A natural improvement is to factor out that ticket creation into a new type of object, afactory that creates
tickets.

In this section, you will make a TicketM aster classfor creating actual Tickets. The Abstract Factory pattern from the GoF collection will do the hard work.

[Step: Bring up the dialog for class by pattern using the Abstract Factory from the GoF collection. |

http://localhost/7classpatterns.html (3 of 8) [5/3/2001 3:49:00 PM]

Together Tutorial -- Part 7

Select the Class by Pattern button (E#) on the Diagram toolbar then click on the Diagram pane. That brings up a

dialog box with a pattern-picker pane on its left. Expand the GoF folder to see the 11 pattern choices.

Abstract Factory isthe first GoF pattern listed. Together forces you to specify the details of the Abstract Factory
before it will create new code. Asyou click on Abstract Factory to select it, Together displays ared warning

message at the bottom of the pane:
Product (AbstractProduct) for Factory (ConcreteFactory) is not defined.

It's time to name the Abstract Factory details.

Step: Name Abstract Factory, Concrete Factory, and Abstract Product as follows:
o ICreateTicketsfor Abstract Factory
o Ticket for Abstract Product
o TicketMaster for Concrete Factory

Fill the names for the pattern details in the upper right pane of the dialog box. You'll
haveto typein | CreateTicketsand TicketM aster directly since they do not yet exist.

Y ou can type in the name Ticket, or you can opt to use the select box at the right of the
Abstract Factory text field instead (@).

— Patterns -
|| = [&7] Patterns]
] Coad Componerts
[E HP E Speak
H El Coad Classes
= = GoF
Rstact Factary
Adapter
Chain of Responsibility
Composte =
Decaratar
Factory Method
Ohserver
Prozy
Singleton
State ||
Yigitar x
Mame | Walle .
Ahstract factory [CreateTickets ER
Abstract product S8 Ticket B
Concrete factary S [TicketMaster B
Copy documentation [v]
Creste pattern links [5]

At this point, the pattern is not complete. There's still an error message at the bottom of the pane:

Product (Ticket) for Factory (TicketMaster) is not defined.

[Step: Designate Ticket for the Product and finish the pattern.

http://localhost/7classpatterns.html (4 of 8) [5/3/2001 3:49:00 PM]

Together Tutorial -- Part 7

Click the Next button at the bottom of the Choose Pattern window to begin this step. The next pattern window has a text field for entering

the product.

Clicking on the select box in that window brings up a Select element window like the one shown below.

To choose the product, expand M odel, then AirlinePD. Then select the Ticket class, and click the OK button.

Choose Pattern - Abstract Factory - Concrete pre

Nezf\h
W

Matme

Walue

Ticket

~Dezcription—

Ahsiraci

Introducti

By Select element

= B8 Model

= [E] fidinePD
T8 AirlinePD
'%, Request Rezervation
'ff MakeReservation
Agent
Coach
FirstClazs
Flight
FlightDe=scription
Reservation
ReservationException

Tick
Diatatdansasment

[e e e e e R e e e

Uszerlrterf) sirinePD. Ticket

B =default-

ER

FEE]

O

Cancel

Help

Product (Ticket) for Factory (Tickethaster) iz not defined.

= Previous

Mext =

Firizh

Cancel

Help

At this point, there should be no red error messages. Click the Finish button to complete creating the pattern.

Finizh i |

Putting the finishing touches on diagram and code

Creating a pattern can result in a pretty messy diagram, especially if new classes or interfaces are generated in the process. Y ou now have a bunch of new

http://localhost/7classpatterns.html (5 of 8) [5/3/2001 3:49:00 PM]

Together Tutorial -- Part 7
dependencies plusthe TicketM aster class and the | CreateTickets interface.

[Step: Rearrange the AirlinePD diagram to show the overall model shape. |

Thisis an easy step. Bring up the diagram speedmenu and

select Layout|All. interface

ICreateTickets T T T

— I

i Pl % Clrl+k +createTickek) Ticket <t ‘i |

e ——— | — — = TicketMaster
All Forrinting r
’T"Factl:urg.r | Factary lL Concrete factary
l\ T +rreateTicketd Ticket

Below is our snapshot from the Overview tab of the Explorer
pane. The corresponding Diagram paneis at the right. (Our

I
| I
) m |
links are rectilinear.) | I
| I
I

I
I
I
| ==thing==
(& 4 (SN \lﬁF‘rnduct : FirstClass
==thing== {:______! +calcPricet:double
Bieket Froduct
7 -basePrice:double |
+oalcPricelldonbfe T _ ==thing==
| Coach
“T'*Cnncrete product | _
- | +calcPrice:doukle

At this point, the code is almost complete, but not quite. Remember that we originally wanted to factor the code for creating a Ticket out of the Reservation
classand into TicketM aster. That describes your next steps.

[Step: Change the | CreateT ickets operation to take an int parameter and make the corresponding change in TicketM aster . |

This takes two easy mini-steps:
1. Changethe operationin | CreateTickets by using the in-place editor:

createTicket(tkind:int): Ticket

2. Citrl+drag the operation from | CreateTicketsto TicketM aster. Delete the origina TicketM aster.createTicket() that has no parameter.

[Step: Move the Ticket creating code from Reservation to TicketM aster and correct the syntax. |

Y ou can move the original code by cutting and pasting in the Editor pane. But the code won't compile immediately after that. Y ou'll need a couple of minor
changes -- declare a Ticket variable at the beginning and return it at the end.

We renamed our Ticket variablet (rather than Ink Ticket), as shown below.

http://localhost/7classpatterns.html (6 of 8) [5/3/2001 3:49:00 PM]

Together Tutorial -- Part 7

public Ticket createTicket(int tkind) {
Ticket t = null;
if (tkind == 1)
t = new Coach() ;
else if (tkind == 2)
t = new Firstd ass();
return t;

}

It would be afine idea to document those magic numbers 1 and 2 (or better yet, get rid of them altogether). But wel'll leave that to your discretion.

[Step: Complete the Reservation constructor so that it uses a TicketM aster to create the appropriate kind of Ticket. |

Hereis our new, improved Reser vation constructor.

public Reservation(String name, int tkind) {
t hi s. name = nane;

Ti cket Master tm = new Ti cket Master ();
| nkTi cket = tm createTicket (tkind);

}
[Step: Check your work by compiling your code. Fix all syntax errors. (They should be minor if any.) |

Make and build commands are on the Main menu under Tools as well as on the main toolbar. Y ou can also find them on the Builder tab = G
of the Message pane. Compiler output messages are on the Message pane. LI

. o . i) Rebuild Project
If you have errors, you can click on the error message to highlight the bad code in the Editor pane. Be sure to fix your code before

continuing the tutorial.

Tipsand Tricks

« Thereare other GoF patterns that are appropriate for this project. For example, the Composite pattern gives be an easy way to allow for group or
individual reservations.

« Select several classes at atime in the Diagram pane by left-click-drawing arectangle that touches all of them. Once they are selected, you can move them
asagroup.

« Citrl+drag to copy an operation from an abstract class or interface to a concrete class. Together makes the resulting operation concrete.

« Usethe Diagram pane to navigate in the Editor. For example, if you want to copy statements from one method to another, navigate to the source by
clicking its method in the Diagram. Then copy the code with the usual commands. Then navigate to the target method via the Diagram pane and copy.

| < previous | Tor4A | NEXT—> | START HOME |

http://localhost/7classpatterns.html (7 of 8) [5/3/2001 3:49:00 PM]

Together Tutorial -- Part 7
Copyright © 2001 TogetherSoft Corporation. All rights reserved.

Last Revised: Mon, Apr 9, 2001

http://localhost/7classpatterns.html (8 of 8) [5/3/2001 3:49:00 PM]

Together Tutorial -- Part 8

Together Tutoria
Part 8: Sequence Diagrams

The class diagram gives the overall shape to amodel. But it's a static diagram, independent of activity within the model. In this part of the Together Tutorial,
you will create some sequence diagrams to show how activities occur.
Together can generate sequence diagrams from actual code. And it will generate code from sequence diagrams, including:

o Classdeclarations.

« Operation declarations.

« Statements in methods that do not yet contain any statements. (Done on explicit request only.)
This part of the tutorial will cover generating code and sequence diagrams. At the end is a discussion on how to create hyperlinks to tie together related project
entities.
Contents:

« Creating a sequence diagram scratch pad

o Correlating generic objects with classes and messages with operations

« Putting control code on diagrams

« Implementing code from diagrams

e Creating diagrams from code

o Hyperlinking project € ements
o Tipsand tricks

Creating a sequence diagram scratch pad
Begin your work by bringing the AirlinePD diagram into focus. The first sequence diagram will be for activity in the problem domain.

[Step: From the AirlinePD package, create a sequence diagram named FindRevenue. |

To create anew diagram, click the left most button on the Main toolbar ([Bj). Below is a snapshot of our new diagram dialog. Wefilled in a diagram description
aswell as name.

http://localhost/8sequencediagrams.html (1 of 13) [5/3/2001 3:49:04 PM]

Together Tutorial -- Part 8

] =
Mew Diagram

LI

A @ W 3

ol
= ® B 8 O
Clazz Uze Case Zeguence Collaboration Statechart Activity Component Deployment
Disgtatn name: |FindF{evenue
Packags nams: |ajrinePD =0
] include in current diagram
Description;
|Ca|u:ulate revenue generated far flight reservations. |i|
Press Ok to create a newe diagram.
8], Cancel Help

The sequence diagram toolbar has five items of interest for the diagrams on this page.

% Anactor can start the message chain
= An object receives and sends messages
=+ o A message link between objects

1 + Asef message call to amethod on the same object
{1} « A statement block for control statements (loops, €etc.)

[Step: Place an actor on the |eft side of the sequence diagram. Then put in three objects.

Together draws a dotted lifeline below each object except the actor, which has a narrow rectangle instead.

[Step: Create a message from the actor to the Object2 lifeline.

http://localhost/8sequencediagrams.html (2 of 13) [5/3/2001 3:49:04 PM]

Together Tutorial -- Part 8

Y ou can drag a message from one lifeline to another. The action is similar to dragging an association from

one object to another on a class diagram and dragging a transition for activity diagrams. Object2
When you finish this step, the target lifeline will have an activation bar (rectangle) starting at the point of the
arrow. (An activation bar can be lengthened, shortened, and moved aong the lifeline.) Obiect
Together puts a halo around the valid source and target lifelines as you pass the cursor over them.
[Step: Create a message from the activation bar on Obj ect2 to the Object3 lifeline. |
Make sure that you start that last message within the activation bar and not
below. Otherwise, you will get a new, separate activation bar on the Object2 Object2 Object3 Object4

lifeline.

Our sequence diagram snapshot shows strictly generic classes and messages, ;
completely unrelated to classes or operations in the class diagram. Object1

Correlating generic objects with classes and generic messages with operations

Y ou can convert generic objects to instances of existing or new classes. And you can make the generic messages correspond to actual operations on these

classes.

Step: Going left-to-right, select classes for each object (except the actor):
for Object2, choose Flight

for Object3, choose Reservation

for Object4, choose Ticket

Then rename the right most object (from Object4 to InkTicket).

http://localhost/8sequencediagrams.html (3 of 13) [5/3/2001 3:49:05 PM]

Together Tutorial -- Part 8

Begin this step by using the object speedmenus. On the right is the speedmenu for

: : Ch Cl =
Object2. Choose Class lists the classes from the package of the sequence SR agent
diagram. (M or e at the bottom of the choices offers classes outside the package.) Coach
After you pick the classes, your sequence diagram should show the three objects i _ Elietiles
and their activation barsin the pink and green stereotype colors. Generate implementation Flight %
. The easiest way to change the name of an object through the i EhgibesstEtion
Ink_Tlc:ketI ; in-place editor. Copy & ICreateTickets
Tighets = Clone Clri+Shift+C = INamed
: Reservation
: FeszeryationException
' ' Delete Delete Ticket
v Tickethaster
Hicle hore. ..
Incidentally, the object speedmenu gives the option of creating anew class or interface. If you
Meswy 3 Class select one of those, Together will generate the corresponding code (and change any
— corresponding class or package diagram).
Propetties... Aft+Eriter Interfai% &P g package diagram)

[Step: Choose calcPrice() for the message from Flight to Reservation.

Right clicking on the message in the diagram brings up its speedmenu.

Choose Operation on the speedmenu gives alist of the available class
methods.

=R L

Properties... Alt+Erter
Rename E
Chonse Operation 4 =& Reservation(name int): void

i calcPricel: double

Zenerate implementation fg gettlamen): String [}3
Delete Delete =& ticketPurchazed() boolean
Type b hore...

[Step: Create a new operation for the generic message from the actor to the Flight object -- ticketRevenue():double.

http://localhost/8sequencediagrams.html (4 of 13) [5/3/2001 3:49:05 PM]

Together Tutorial -- Part 8

The message properties inspector is near the top of the message speedmenu.

When you specify a new operation in the inspector, Together creates a dialog box like the one below. For
this problem, you should click the Create button.

m Operation ticketRevenue) doukle not found in class Flight.
Creste neww operation ticketRevenue) double”

C[Eiate Cance|

g

X

If you rename an existing method, Together's dialog box has three buttons: Rename, Create, and Cancel.

i
cliert]
supplier
operation ticketRevenuel): double |§ B
lakel

sequence number 1

crestion]

Putting control code on diagrams

In this section, we will change the activation bar on the Reser vation lifeline to represent finding the revenue from a single reservation:
"The revenue generated for areservation is the price of the ticket if the reservation has been ticketed. If it has not been ticketed, the revenueis0."

return value to hasTicket.

Step: Put a self message on the activation bar on the Reser vation lifeline. Choose ticketPur chased() for its operation. Set the

The sequence diagram toolbar has a self-message button (). After you create the self-message,

choose ticketPur chased() asits operation.

For the remainder of this step, you'll need the properties inspector.

The return on the Link tab of the property inspector indicates the name of the value to be returned.
Together can use that information to generate code. For our case, the code that Together will

generate on demand is:

boolean hasTicket = this.ticketPur chased();

http://localhost/8sequencediagrams.html (5 of 13) [5/3/2001 3:49:05 PM]

clieri

supplier

operation E'ticketPurchasedU: boalean “ £k
lakel |

seguence number 1.1

creation]

destruction]

arguments

return -haSTicket ||
N — -

Press Cirl+Enter 1o finizh editing and close Inspector

Together Tutorial -- Part 8

Step: Create two statement blocks on the activation bar on the Reser vation lifeline.
1. Put anif statement block on the activation bar beneath the self message.
2. Set theif condition to hasTicket.
3. Put an else statement block beneath the if.

A statement block (such as an if) shows as a dark rectangle on
the activation bar. Statement blocks have speedmenus that you

x| can access by right-clicking statements or rectangles.

Clicking the statement block button ({ }) and then clicking the Reservation _
activation bar brings up the dialog box here. ﬁ”ﬁ

Set the if condition with

(a0 if itsinspector. The
e condition goesin the

St "statement expression”
7 elze Mame textfield.
7 for statement type ||f | ‘r|
(o1 il .statemerrt exprea...ghasTicket
7 do-while

ik kj Canca] Press Ctrl+Enter to finish editing and cloze Inspect. .

[Step: Create a calcPrice() message from the if block to the Ticket. |

Statement blocks, activation bars, and lifelines can be used for message starting and stopping points. For this step, be e
careful to start the message inside the if block rather than el sewhere on the activation bar.

ficketFurchased:hoolean

ifthasTicket) :
I

In our diagram, we pulled the if block down the activation bar to allow more room for annotations.
calcPriced:double

Implementing code from diagrams

Together will generate code for a method using a sequence diagram if the method has no code in its body to start. Before beginning the next step, remove any
return statement (or other code) that you may have placed inside the body of Reservation.calcPrice().

[Step: Implement Reser vation.calcPrice(). |

http://localhost/8sequencediagrams.html (6 of 13) [5/3/2001 3:49:05 PM]

Together Tutorial -- Part 8

Thisis an easy step. After clearing out any code from the body of Reservation.calcPrice(), select

. . . ey d
Gener ate lmplementation from the sequence diagram speedmenu. Y ou should get two messagesin the
Message pane. Thefirst for Reser vation.ticketPur chased() and the second isfor Ticket.calcPrice(). Properties... Aft+Erter
1. message#1.1.1 associated operation is not empty -- can't generate code Rename Fz2
2. message #1.1.2.1 associated operation has no body-- can't generate code Ehvioes Opetaiion >
Together will not generate any code for methods with non-empty bodies. Neither will it generate code for Unlink operation
abstract methods. Zenerste implementation %
" . . #1.1.1 is amessage sequence humber. Y ou can get sequence numbers 0
h1.1.2.1: cost:={calcPrice{:double} | from the message properties inspectors. Y ou can also get them by

double clicking the messages in the diagram.

Below isthe completed sequence diagram, with three messages in boldface. Together sequence diagrams put boldf ace type on messages that are invoked as a
result of creating code via Gener ate | mplementation.

Object2 Object3 InkTicket
Fligghit Reservation Ticket
Object1
totalRevenuel) double _!_ |

calePrice(:double |
|
=

I

I

e |
hasTicket:=ticketPurchazed():boolean |

I

I

I

| if(hasTicket)

cost:=calcPrice(:double

Seguence diagrams can give structure to code. But it's up to you to finish the details. Below is the incomplete code for Reservation.calcPrice().

http://localhost/8sequencediagrams.html (7 of 13) [5/3/2001 3:49:05 PM]

Together Tutorial -- Part 8

publ i c double cal cPrice(){
/'l message #1.1.1 to this:AirlinePD. Reservation
bool ean hasTi cket = this.ticketPurchased();
if (hasTicket) {
/1 message #1.1.2.1 to I nkTicket: AirlinePD.Ti cket
doubl e cost = I nkTi cket.cal cPrice();

else { }

}

Y ou can correct the code with two return statements;
1. Put areturn statement inside the if statement block: return cost;
2. Put areturn statement intheelse: return O;

[Step: Remove any syntax errors from Reser vation.calcPrice() and Flight.ticketRevenue(). Correct logic errors as you seefit. |

Creating sequence diagrams from existing code
Together can generate sequence diagrams from code that has no syntax errors. As a preliminary step to your next task, you should Make the project as an error
check.

Step: Generate a new sequence diagram from Flight.makeReser vation(). Show every class from the AirlinePD package. But
don't show anything from java.util.

http://localhost/8sequencediagrams.html (8 of 13) [5/3/2001 3:49:05 PM]

Together Tutorial -- Part 8

The option to Generate Sequence Diagram is on operation
speedmenus in class diagrams.

The snapshot to the right shows part of the speedmenu for
Flight.makeReservation().

The Generate Sequence Diagram Expert gives a choice of which
classes and implementation detail s to show. For our sequence
diagram, we checked off all the java.util items; we checked on all the
AirlinePD items.

T e g U - r-«'i!-l
makeResenvationiname: i

+rumkbern

Zelect in Model Tree

+icketRe

"‘[I_,_Generate Sequence Diagram. ..

Tools

& Generate Sequence Diagram E:H:IJEI"I_:'_-

X

on diagram Shov implementation

EgglF‘ackage.fc:lass 'r|5h|:|W
=1 = AirlinePD : [¥] ¥
. “-Cl:uach E 'E
 Erignt I7) Vi
" B FlightDescription il ¥
. -.H-eservat.i;:un |E E
B Tickethaster ¥ I
& java util I W

Cancel

Dk%_

Below is our sequence diagram. Its (default) name is Flight.makeReser vation(1). Light rectangles are activation bars (corresponding to method calls). Dark

http://localhost/8sequencediagrams.html (9 of 13) [5/3/2001 3:49:05 PM]

Together Tutorial -- Part 8

rectangle correspond to loop or conditional statements. The final four objects are lowered on the diagram to indicate that they are created as the reservation is
made.

initial hnkFIightI]escriptiu
Fligit FlightDe=cription

Object1

I
makeHeservatinn(String,intjl:'-.ﬂlmid
[==

|
|
|
|
t=rmberOf Tickets(il
o =getCapacity int |

Lif(t =) L

i =constructor=rname, tkind) e Reseryation tm

— 1 e |TicketMaster

InkTicket: =n::reateTi|E—|<_|et[tkindj: Ticket
=
ifrtking == 11

elze
ifftkind == 23

t
=i StClEEE

L

e
i elze

[Step: Generate a collaboration diagram from Flight.makeReservation(1). |

Collaboration diagrams are equivalent to sequence diagrams. To switch from one to another, go to the diagram speedmenu. (Together maintains only onefile
for the two diagrams, representing different views of the same information.)

http://localhost/8sequencediagrams.html (10 of 13) [5/3/2001 3:49:05 PM]

Together Tutorial -- Part 8

Speedmenu for sequence diagram Speedmenu for collaboration diagram

show as Sequence %
Showe = Collaboration

Generate implementation Generate implementation

Below is our collaboration diagram for Flight.makeReservation(1). (We moved the nodes around to make them fit in asmaller space.)

LFirstClass r:Reservation InkFlightDescription:FlightDescription

g s (R S A

"1 3.1 =constructors(ramd, thind)
1311
1,

3.1.2 InkTicket: =createTickettkindg) Ticket %1 2 co=aetCapacitynint

t-=coach |1 51211 = tm:TicketMaster

1: makeRezervation; Stringint)void =% linitial:Flight

Object

1.1: t=numberCfTicketstint —=

Hyperlinking project elements

Hyperlinks between Together objects (such as diagrams and diagram elements) can tie objects together and shortcut project navigation. When an object on a
diagram is hyperlinked to another, its name appears in blue.

+makeReserationinarme:Str | sequence diagram. Look at your AirlinePD class diagram. The operation named Flight.makeReser vation should be

(Gt PR 1 When you create as sequence diagram from an operation, Together automatically hyperlinks the operation to the
srumberomicketsint 1 blue because it's hyperlinked to the collaboration diagram Flight.makeReser vation(1).

Y ou can also create hyperlinks from one object to another directly viathe object property inspector.

http://localhost/8sequencediagrams.html (11 of 13) [5/3/2001 3:49:05 PM]

Together Tutorial -- Part 8

Step: Create a hyperlink from the M ake a reser vation use case (on the M akeReser vation use case diagram) to these elements:
1. to the collaboration diagram Flight.makeReser vation(1)
2. tothe activity diagram, Request Reservation
3. tothe Flight class on the AirlinePD class diagram
4. to the Agent class on the AirlinePD class diagram

Start at the M akeReser vation use case diagram. & Properties of Make a Reservation 4|
Right click the Make a Reser vation use case to Description | HTMLdoc | Requiremers |
bring up its speedmenu and properties inspector. ~ Propeties | Hyperink || Wiew |
Then go to the Hyperlink tab in the inspector. & & Elemert] i
Right clicking on Element brings a Select Element B URL "_JEW dliagram
menu giving a choice of hyperlink itemsto add as ~ Existing elemert-
hyperlinks. N
When you finish, the Make a Reser vation use case Selech EleiiEi = =
should display in blue font. Svwailable content Existing andior ready to add elements
[+ 9, MakeRezervation k=i Feguest Reservation
= T Mocel Flight rakeReservation(1}
= = E] airlinerD Flight
Pre F Z8 AirlineRD 2 g
[+ _%,_ Recguest Reserystion 22 Add ==
= ", FindRevenue B 'E\'E“
H +|]-> Flight makeRezeryatic = -REmoVE == [
& E [Agert]
M Coach == Remove all ==
[+ FirstClass
& Flight d
M FlightDe=scription -
1 |'Ei5251525252525252525'{E | ¥
2k Cancel Help
i

[Step: Travel from the Make a Reservation use case to the makeReser vation(1) diagram via the new hyperlink.

http://localhost/8sequencediagrams.html (12 of 13) [5/3/2001 3:49:05 PM]

Together Tutorial -- Part 8

Y ou can travel on the M ake a Reservation use case hyperlinks viaits
speedmenu. (The cursor does not change into afamiliar hand when it is above a
hyperlinked element because there are several possible destinations.)

Use the forward (53) and reverse (£a) arrows on the Main toolbar to travel back
and forth on hyperlinks.

Zelect in Model Tree

Hyperlink To

&, Request Reservation

"|]., Fligm.malﬁeservaﬁnnﬂ 1
Flight
Aogent

Tipsand Tricks

« You can hyperlink from a Together element to items outside Together entirely. For example, you may want to hyperlink a use case to a requirements

document.

« Sequence diagrams are tied intimately to code, but Together keeps code and sequence diagrams in sync only on demand.

« You can use the in-place editor for messages to change the name of the operation but not its return type.

« To create anew non-void operation for a message, use the message inspector rather than the top item on the speedmenu.

| <= PREVIOUS | TOPA | NEXT—> | START HOME |

Copyright © 2001 TogetherSoft Corporation. All rights reserved.
Last Revised: Thu, Apr 12, 2001

http://localhost/8sequencediagrams.html (13 of 13) [5/3/2001 3:49:05 PM]

Together Tutorial -- Part 9

Together Tutoria
Part 9: Documentation Generation

Self-documenting code may be an oxymoron. But with Together, self-documenting projects become areality. Together will generate documentation -- all kinds
of documentation, from HTML to RTF to PDF. The documentation is fully hyperlinked to show relationships among project entities. For anyone needing
customized documentation in a special format, Together even offers a powerful document designer.
In this part of the Together Tutorial we'll show you how to generate documentation. The discussion is short, in part because generating documentation is so
easy.
Contents:

» Generating HTML documentation

¢ Generating documentation in RTF format

e Tipsand Tricks

Generating HTML documentation

Together uses Javadoc comments in code to keep track of properties of diagrams and diagram elements. It uses those Javadoc comments in creating
documentation as well.

[Step: Generate HTML documentation for the entire air line project. |

HTML documentation generation isasimple click of a Tonk
button. Select T ools|Documentation|Generate HTML — :
from the Main menu. RIS M| T3 Generste HTML...[%

Gualty Assurance J Prirt Miae wmertati

With the options button on the bottom of thedialog box, | — " *
you can specify avariety of settings: Inspecto

Generate HTML = b

1. Whether to include or exclude header tag Coce Tey | SCOPE
information (author, version, etc.) T) Currert package {1 Currert Diagram
2. gtrée)clal HTML options (window title, stylesheets, e e s T @
3. Thevisibility levels of classes shown in the -
documentation rOptions- 7
Outpt folder: |(C:ATogethers Doutvweebpublizhtairline, | @
[#] Include Diagrams [w] Mavigation Tree

[#] Launch HTML Browser

Ok |\‘i | Cancel Cptionz. .. Help

http://localhost/9docgen.html (1 of 6) [5/3/2001 3:49:08 PM]

Together Tutorial -- Part 9

The entire HTML document is hyperlinked, with both terms and image maps. When you click on an item in a class diagram, for example, its documentation
showsin the lower right frame.

Below is a snapshot of our documentation. The browser displays the resulting documentation in three frames. The top frame is adiagram. The lower left isan
applet with an explorer and overview tabs. The lower right frame has the written documentation.

‘23 (', Together5.0% out', webpublish', airline' index.html - Microsoft]‘.n'l:e _ lorer -0 x|
J File Edit ‘iew Fawaorites Tools Help |-
J s=aBack = = o~ @ @ ﬁ | I@Snearch (3] Favorites @Histnrv ||:%v 5 "!‘!’* - %
J.ﬁ.ddress @C:'I,TDgEthEFS.I:I'I,l:ll.lt'I,WE|:l|:ll.I|:l|i5|‘|'l,air|il'|E:'l,il'|l:|E-'x.|‘||:I'|'|| ;I i‘> o
T ST Tt
e ——— 1 0.1 _ —]
| U — -hasePrice:double
et ame() String :_ s
= i : = +ral
| +Resemationiname: String tind:int) SeLEEL 1
| HicketPurchased(hoolaan M Conerete product |
| +calcPriced:double I |
| +getiame: String I N e I
==moment-intenal== P e e 2<role==
Flight | Agent
—————————————————— Reservat
AtecDiate Make a resersation only if the -narme: String=""
- — — — — humber oftickets is | than
nakeﬁeaewatlnnmame:ﬁtr the plane capacity. +makeResenvationiname:Strin +ResamationE
u.m_h_erorl'lckgts_{:n:lnt. 0.1 +gettlame): String +ResemvationE =
< | ~
Pruiectl Overview | Notel :I
B] <defauts =l

= AirlinePD
+ ¥, FindRevenue

[+ 2

Bgent

Coach
FirstClassz

Flight
FlightD'escription
Rezervation

+ %, Request Reservation

[+] "ﬂ_. Flight. makeR ezervation|1]

stereotype Business Eule
capacity.
Note Links

to Class ArknePD Flisht

text Make a reservation only if the number of tickets 15 less than the plane

-

http://localhost/9docgen.html (2 of 6) [5/3/2001 3:49:08 PM]

Qverview Package Class Use Tree Index Help

-~

Together Tutorial -- Part 9
L o 11 PREY DIAGREAM MNEXT DIAGRAM FRAMES MO FEAMES

|@ File: [1T fTogethers, 0fout fwebpublishy aidlineairlinePD) dirlinePD. cl. bkl a0 I_ I_ |@. My Compuker

Notice that the business rule requirement on the note shows up as part of the documentation.

Generating documentation in RTF format

Together generates documentation in several formats: text, HTML, PDF, and RTF.

[Step: Generate RTF documentation for the entire airline project.

Together has atemplate for documentation in RTF, accessible viathe Main menu:
Tools|Documentation|Gener ate using Template.

The resulting dialog box has afamiliar look.

Generate Documentation using Template " i i . ﬂ
CECOpe
1 Current package o Current disgram

1 Current package with subpackages (@) @

Template: CATogethers Dmodulestcomtogethersoftmodules\gendocitemplatesProjectReport tpl - % Design...
Cutput format: | RTFE £ Cptions. ..
Digtput folder: [CHOTogethers Dot fairline %

[¥] Include Disgrams
[¥] Includle Elements Impotted from the Clazspath

[¥] Launch Yiewer

D}t | Cancel Help
&

Below isthe first part of the first of 26 pages of documentation that Together generated.

http://localhost/9docgen.html (3 of 6) [5/3/2001 3:49:08 PM]

Together Tutorial -- Part 9

airfine Project Report

Tue Apr1011:4749 EDT 2001

Table Of Contents

R R R R i S B T T ST 3
e A A e T R T e T P T T T S T BT e e e e D e T e e e S s s e 3

At

T T (- T e e TSRO UO PP PTPROPIPRPRORt 3

Rack A e N O B I s R e e S R e S L e e s T T ey 3

= T e T R T T TS 3

B R B S e e e e e e st e e B e e e e e e e e e R e e e e e et e 3

% B Te =T R o o R e e e e e e R R e R s SR R e e R e R B e R e e e R 4

s G B T s e s e S B S R T R S T S R T S T S T B R T R R R R R R T RN R NS RN SRR R RN R R e R 4
3 e ot T T (T R T L SRR 4
et Rl R e R R R R R R R R R R R R R R R R R T R R R R R 4

ﬁJDJ: Bt L | g 1 TR 4

http://localhost/9docgen.html (4 of 6) [5/3/2001 3:49:08 PM]

Together Tutorial -- Part 9

Together Control Center lets you create your own documentation template. L ook
at the Main menu under T ools|Documentation|Design Template.

On theright is snapshot of a new template in the documentation designer.

With the document designer, you can specify headers and footers as well as the
internal organization of the document.

http://localhost/9docgen.html (5 of 6) [5/3/2001 3:49:08 PM]

Documentation Designer - [Noname:

File ©Ohject Stock Help

=10 %]

(1§ Monane|

=|Page Hea

=|Report He

=|Element it

Static Sen

=|Report Fo
=|Page Fool

terstion by "Package"

Ares Properties. .

Inzert Control

Select Al

Lakel...
Image... :
Panel...
Farmula...

Data Contral...

Together Tutorial -- Part 9

To get our screen snapshot above, we started with File]New Document Template in the Documentation Designer. Then we went through two steps:

1. We changed thefirst Element Iterator to Package viaright-clicking its purple bar. Together lets you iterate over alarge variety of types, from Activity
and Activity Diagramsto XML Structure Diagrams.

2. Weright-clicked the Static Section immediately below. The items on the Insert Control menu are described in the Together documentation:
0 Labels-- text labels
o Images -- gifs, etc.
o Panels -- for controlling presentation format
o Formulas -- for data not available directly from the source
o Data Control -- information that the report will actually display

[Step: If you have Together Control Center, generate PDF documentation for the entire airline project. |

Selecting Tools|Documentation|Print brings a dialog box with an option to create a PDF file. The dialog box has a convenient preview button.

Tipsand Tricks
« Together uses many of the items on properties inspectors in generating documentation.
« When you have a choice of files or folders, Together will show the "pick folder" icon (). Click it to access the file system.
« Hyperlinking is not restricted to HTML documentation. It is also part of RTF documentation.

« Printed diagrams alone are a source of documentation. Y ou can see where page breaks would come by checking Show print grid on the View tab of

Diagram options. When you select L ayout|All for Printing from a diagram speedmenu, Together will arrange not to split diagram items over page
boundaries when possible.

| <= PREVIOUS | TOP4A | NEXT—> | START HOME |

Copyright © 2001 TogetherSoft Corporation. All rights reserved.
Last Revised: Thu, Apr 12, 2001

http://localhost/9docgen.html (6 of 6) [5/3/2001 3:49:08 PM]

Together Tutorial -- Part 10

Together Tutoria

Part 10: Audits and Metrics

Together provides built-in quality assurance features to help enforce company standards and conventions, capture real metrics, and improve what you do. Two
features are specifically designed for quality assurance: audits and metrics. Audits check code for conformance to user-defined styles, maintenance and

robustness guidelines. Metrics calculate the complexity of the code.

Together has long supported audits for Java projects. And now, Together 5.0 supports C++ audits as well.

The airline project is the basis for discussion in this part of the Together Tutorial. For aricher example, turn to the Cash Sales project that ships with Together.

Contents:
« Auditing your project

o Generating project metrics

e Tipsand Tricks

Note: Thisisan optional part of thetutorial. Only Together ControlCenter supportsauditsand metrics.

Auditing your project

Together will generate Audits and metrics only if the Quality Assurance moduleis
active. Y ou can activate the module by checking on Quality Assurance from the
Options|Activatable M odules item on the Main menu.

Start the next step from the default package.

Activatable Modules

Reload

[Guglty Sesurance

¥ ‘®obustness Diagram

ol

=earch for Uzages

et US Locale as Default

e |

Yersant Integration
ML Editor
=il Structure Diagram

= O

[Step: Generate complete audits for the airline project.

http://localhost/10qualityassurance.html (1 of 7) [5/3/2001 3:49:12 PM]

Together Tutorial -- Part 10

Q_uahty Assuranceis listed on package SSclertation R
diagram speedmenus and the T ools _
menu. - Quality Azsurance 3 @,Audﬁ
. . . 2 Metrin: [}5
Auditing starts with a dialog box for . SRl
. : [1ava Audit el X
selecting audit standards. i
. . . Title Abbrevigtion | Chosen :
For this audit, click the Select all button. [+ Pozsible Errors v o Severfty: |Low W
(You can aso load sets of audits, = Superfluous Contert _ v I
including the Sun code conventions for Duplicate Import Declarations ol [w]] Check parameters for-
Java, which are available from the Don't Import the Package the Source File Belo... DIPSFBT v 1 | | {1 private operstions
L oad set button.) Explicit Import Of the java lang Classes EIDJLC v O & e
Equality Operations On Boolean Arggments _EDOEI.E« IE |
Impaorted kems hust Be Used IMEL v [v]
Unnecessary Casts s V]
nnecessary 'instanceot' Evalustions _LIIOE @ s
Unuzed Local Yariables And Farmal F‘arameterS:ULVAFP [|
Uze Of Obszolete Interface Modifier {ICh [w]] -
EEIE'?E%EJ Unzelect all Set defaults Save zet As Loadd zet..

ULVAFP - Unused Local Variables And Formal Parameters

F

Local variables and formal parameters declarations must be used.

Wrong

int oper (int unused param, int used param)
int uwmsed war;

‘]

Start Cancel Help

P

The scrolling list of the Java Audit window has a Chosen and Fix columns. The Chosen column lets you select or deselect specific audits. Checking a box on
the Fix column instructs Together to change the source code to eliminate the problem. The upper right part of the Java Audit window lets you rank the standards
as Low, Medium, or High priority. The resulting audit table can be sorted according to that rank.

The lower portion of the Java Audit window documents each audit standard. For most items, the documentation shows examples of code that violate the
standard as well as equivalent code that adheres to the standard.

Generating audits on the airline project should be quick. Together brings up the results in atable in the Message pane.
« Click on any column header to sort the table according to the entries in that column.

http://localhost/10qualityassurance.html (2 of 7) [5/3/2001 3:49:12 PM]

Together Tutorial -- Part 10

« Click on any entry to bring up its speedmenu. The description of each entry is a choice on the speedmenu.
« Doubleclick any line in the table to bring up the corresponding code in the Editor menu.

public Vector getdll() throws SQLException

{
return super.selectlistithis. columnlames, ™", "SaleTime™):
1
Fi:-:| Sever..| < Abbrevi... | Explanation Element ftem File Line|
:Ll;n'-.fx_f .Z&!Z_WIL _:.-'lWDid Declaring Yariahles Inside L. [BErvEr. Database, getIDSt IDString data = getlDString... Ee_rxfeﬂpfatg_t:nase.j..: ! 5_8 =
:Lu;u'-.fx_f .ADVIL _:.-'lw:ud Declanng Variables Insude L... [ZErYEL. Databaze. getStrln._._.__Strlng text = r=. getStnng(t..: "l.;e_rxfeﬂpat_a_k:uase.j..: ! 1DE B
:Lu;u'-.fx_f .AECEI _:.ﬂ-.‘-.-'tlld Empt':.-' Catch Blacks ;user interface. CashSaIe..._ n:atc:h(Exn:eptu:un ej { _fmser_iljtg_rf_aun:_n_am... | 47
-High _-ADSMTD : _.ﬂ\ccess Of Static Members Thrn:uug._._.;data managemerrt SaIeD:._. this. cnlumnNames :*.da_ta__rp_anag_e_rpgrﬁ_‘l..:.] D 1DS[I
[High | A0SMTO (Access Of Static Members Throug.. juser_interface POSFram. .. thls LISE DEI [wiser_interfacePO... | 374
'ngh _ADSMTD |ACcess Df Statu: Members Thrn:uug...:user_lnterface.F‘DSFram... thls LISE DEI [wser_interfacePO... | B3
@ ﬁi&-ﬁ&ﬁgﬁ %oy Java Audt |
[Step: Create an HTML document from the audit table. |
The table speedmenu has an Export Export , e
command. For this step, choose : i ”%a Skt
Prirt... Calartar R

Export|The Whole Table.
Together brings up a dialog box for

selecting the file name and file type. I Group B
One of the HTML options copies [Sort Asc
links to the descriptions of each 0 Sort Des

audit standard to the table. (Oursis
unchecked.)

Dispose Export Results to File

Ot File-

gt file:

Ctput e

rHtml Optionz—

\C:\Togethers Doutiaudi]

|_Generate HTML file -

|=eparated by tabs
Aligned with spaces
Generate HTRIL f|Ie

[_] Copy de

LTTREITOT T TS g = LA AT LT T

|2’

ik Cancel

Generating project metrics

http://localhost/10qualityassurance.html (3 of 7) [5/3/2001 3:49:12 PM]

Together Tutorial -- Part 10

You'll want to begin at the default diagram for the next step also.

Metrics are avail able from the same menu
as Audits. From the diagram speedmenu,
select Quality Assurance]lMetrics.

The dialog window should look familiar.
In the upper left isalist of the possible
metrics. For this step, you should click the
Select all button.

The panel in the upper right lets you select
the upper and lower limits for each metric.
The granularity can be according to class
or operation.

The lower panel documents each metric.

[Step: Generate all metrics for the airline project. |
Java Metrics : . .h = x|
| Title | Abbrevistion | Chosen | R Iﬂi
F Basic | [b I .|
[+ Cohesion | v Upper limit: |1|:|
Bl Complextty [v] | ;
Aftribute Complexity A [v] Aggregation: | Maximum
Cyclomatic Complexity fcc v
Ririkip Of emols Methods i] SRR e
RespanseholClass, REC M B
Weighted Methods Per Class 1 AMPC b [|| =liease s bianch
~ Wieighted Methods Per Class 2 NP C2 v |
[Coupling [v] =
[Encapsulation [v] =
[Halstead v &
i nhertiatic [v]
Ef Messimum M |5
Select all LUnzelect all Set defaults Save zet As Load =&t
CC - Cyclomatic Complexity fual
This measure represents the cognitive complesity of the class. It counts the number of possible
paths through an algonthm by counting the mumber of distinct regions on a flowgraph, 1.e. the
mumber of if, for and while statements in the operation's body. Case labels of switch statement are |2
counted optionally, -
SQEM Cancel Help
A

The resulting table in the Message pane is similar to the Audit table, with packages and classes marking the rows and metrics marking the columns. Each
column heading has a flyover box with it unabbreviated name.

http://localhost/10qualityassurance.html (4 of 7) [5/3/2001 3:49:12 PM]

Together Tutorial -- Part 10

ftem AC| AHF AF| ©BO G F CR| Dac| DoH| Fq] HDiiff
= B =defautt= 41 91 0 46| 55 37 4 18 2 q
=] util 1| 13 24| 0| 1| 0|Fancut
Requirements 1| 4 26| 1 1 1 1
data_management 45 gl 11 24| 3 2 7|
E] server 14 11 55 4| 2| 1| Bl
4]
B Java Metrics ||
[Step: Find the description of Fan Out. Generate a bar graph for the Fan Out metric on the Cash Sales project. |
The spee(jmgnu for each column gives access o D
to adescription of the column header. — S— {}\x_
- . Export
The description window has two tabs, one for x|

the description itself and the other for a bar
graph. Bar

| [[Description

FO - FanOut

Coutits the tmunbe
declarations, fortm
atid local watiables

F 2 Faniowt

=default>

uitil

Fequiremants
data_rmanagemant
SEMaEr

problem domain

user_interface

[] Selected rowves anly

[] Auto update

http://localhost/10qualityassurance.html (5 of 7) [5/3/2001 3:49:12 PM]

FO FanCut

Together Tutorial -- Part 10

Step: Reset these metric limits for the Cash Sales project.
o CBO -- Coupling Between Objects -- (Upper Limit = 5)
e CR -- Comment Ratio -- (Lower Limit = 15)
e FO -- Fan Out -- (Upper Limit = 3).

Generate the metrics. Then create aKiviat graph for data_ management.

You'll have to start from the beginning to reset the metric limits. The CRO o OF R

upper right panel of the Metrics dialog box has fields for entering new
[imits.

45 55| 37 4

When you generate new metrics, the results will overwrite the original
ones in the Message pane. Numbersin blue (CR in our picture) are

lower than the lower limit. Numbersin red are higher than the upper DAC DOIH
limit.

The speedmenu for each cell of the metrics

Bar Graph... table has graph options. An interior cell (not

Kiviat Graph... [% in the first column or first row) has an option CC MMOL
for both a Bar graph and a Kiviat graph.

Kiviat graphs correspond to the rows (classes and packages). Bar graphs)
correspond to the metrics. CBO

For this step, put the cursor anywhere in the data_management row of
the metrics table and select Kiviat graph from the speedmenu. Together
will generate the graph, which shows the distribution of metrics over the
package. WMP C2

WP G

[| Aute updste| Print... Cloze

Tips and tricks
« Use audits and metrics as your first stepsin refactoring code.
« Use Bar graphs when you want to consider the distribution of a particular metric over a collection of classes and packages.
« UseKiviat graphs when you want to consider the distribution of different metrics over a particular class or package.

http://localhost/10qualityassurance.html (6 of 7) [5/3/2001 3:49:12 PM]

Together Tutorial -- Part 10

| <= PREVIOUS | TOP4 | NEXT—> | START HOME |

Copyright © 2001 TogetherSoft Corporation. All rights reserved.
Last Revised: Tue, Apr 10, 2001

http://localhost/10qualityassurance.html (7 of 7) [5/3/2001 3:49:12 PM]

Together Tutorial -- Part 11

Together Tutoria
Part 11: Multi-User Support and Version Control

Together has multi-user version control that enables teams to share projects, diagrams, and source code. Together shipswith CVS, and it can be easily integrated with
any SCC-based version control system as well. (Indeed, Together's file-based architecture means that you can use your favorite file-based version control system
client.)

This section will show how to put the airline project under version control.

Contents:
o Putting a project under version control

« Adding filesto version control

o Checking filesin and out

« Examining version control system properties
o Tipsand tricks

Putting a project under version control

Start this section by opening the airline project.

[Step: Enable the airline project for version control. |

Putting a project under version control is a multi-step

process. Begin with the project properties, available

from the Main Menu under File|Project Properties.
1. If the Properties window does not show its

"Resources" section, click on the Advanced
button.

| Adgancequ;; |
s
2. Click the Options button to open the Project
Options window.

http://localhost/11versioncontrol.html (1 of 7) [5/3/2001 3:49:15 PM]

Together Tutorial -- Part 11
3. Check on Version Control enabled at the top
of the Options window. Then expand Version
Control enabled and scroll down to Use on
the menu.

(We used the default version control settings.
Each version control system has its own menu.

| VS LAN - |

CWS LA %
S ClientfServer
SoC

P%CS Tools

Genetic Provider

4. Click OK on the Options window to return to
the Properties window.

http://localhost/11versioncontrol.html (2 of 7) [5/3/2001 3:49:15 PM]

rResources-

: |/ Project Paths rséérghi@éééﬁ'ﬁfﬁ’rEqu |

CiTogethers. Mmyprojectsiairline [_] Skin path
[[] Read only

File types to create in selected path:

| [¥] Java source files

Package prefix |

[[] wersion Cortral project: Opt_iu:lns.[:

Ao Mame | alue |
[=F Sersion Cortral ermhled [#]
— Gt files on project DpEming o D
— Check in all files on project closing e)
— &ction on files renamed ~| Puish ~ :
— Heep files always checked aut o (¥l
— Uze dialog before operation on files oo (¥l
e e s C'\-"S LAN - |
Sharedfolder o STGHShInAInG2repository]| S]]

[sToHSminMwina2icvs exe || w

Together Tutorial -- Part 11

5. Check on Version Control project in the

Properties window. ¥ersion Control 3 x|

Thiz appears to be first time you open this CW'S project.

airline

l_’ﬁ'v'ersiun Control project: | Options...

Project: airline

Do you sweant to create it in repository?
Repository: CTogethers bintvin32repostory

6. Click OK to close the Properties | Eﬁ | | Mo

window.When you click OK to close the
Properties window, Together will pop up a

message box to create the repository. Click
Yes.

Adding files to version control

When you enable a project for version control, the class and diagram speedmenus show a hew command, Version Control.

[Step: Put Agent.java, Ticket.java, Coach.java, and FirstClass.java under version control. Do not keep them checked out.

Y ou can add a single class to version control through Version Control|Add on

“ersion Cortrol]

its speedmenu. (When a classis hot under version control, Add and System are
the only available options.)

In the resulting dialog box, you should leave the first command option
unchecked.

(If you want to add all classfiles, packages, or diagram files, you can go to the
diagram speedmenu. Y ou can also add via Version Control|System on any
speedmenu.)

Together displays read-only fileswith alock (&). Y our
FirstClass node of the AirlinePD package diagram
should look like ours, with alock in the lower right
corner.

==thing==
FirsiClass

+ralcPrice(:double

Ela FirstClass The Explorer pane Model view shows a A

lock on FirstClass a so.

imibilits b

Add to Yersion Control

X

Select Al || Unselect Al |

CTogetherd. Mimyprojectsiairine@idinePOWC oach java

— Command options-

[|Heep checked |:|ut|

[¥] Al Files

[w] Source files

[#] Diagram files
[#] Project files

|| Package diadram files

Comment:

Empty comment

http://localhost/11versioncontrol.html (3 of 7) [5/3/2001 3:49:15 PM]

Together Tutorial -- Part 11

Checking filesin and out

Thefiles under version control should not be checked out prior to the following step. (If you neglected to uncheck the "Keep checked out" box in the Add to Version
Control popup window, then the files you added will be checked out. In that case, select Version Control|UnCheck out from the class speedmenu.)

[Step: Check out Coach.java. Then change the return statement in calcPrice() to: return 199.0; |

Y ou can check afile out through its speedmenu: Version Control|Check out.
You'll get adialog box similar to the one on the right.

Check out from Yersion Control - i i |

Y ou can check out several files at the same time by lassoing them and going to the | Select &I | | Unzelect Al |
speedmenu. The lassoed files will appear on the upper (selection) panel.

_ _ CiTogethers. DimyprojectsiairinedirinePOWC oach java
All Version Control systems offer these options.

« Add-- adds afileto the version control system CaTar
« Get -- for looking at afile without changing it Ermpty comment
« Check in -- returnsthe file to the repository
« Check out -- checksthefile out of the repository

Together's dialog boxes vary according to which version control systemisin I
effect. Under CVS LAN, Together has two additional options:

« UnCheck out -- to check afile back in without recording its changes since
being checked out.

» Update -- to update the local copy of afile by merging in the other users
modifications from the repository.

Ok, I | Cancel | | Help | | Advanced

.

Step: Try to modify FirstClass.java the same way as you did Coach.java.
Then check FirstClass.java out. Modify it, changing the return statement in calcPrice() to: return 499.0;

A file under version that is not checked out is read-only. The Editor pane will not allow you to modify it.

[Step: Check in Coach.java. Put acomment in the Comment portion of the Check-in dialog box. |

Y ou can check in aclass or diagram via its speedmenu. The dialog box is similar to the Check-out dialog box.

We replaced "Empty comment” with "Correct coach class ticket pricing”

Examining version control system properties

Y ou should now have four files under version control:
1. Agent.java never checked out.
2. Ticket.java never checked out.
3. Coach.java checked out, modified, and checked back in.
4. FirgtClass.java modified and still checked out.

[Step: Determine the status of each file viathe Version Control System window. |

http://localhost/11versioncontrol.html (4 of 7) [5/3/2001 3:49:15 PM]

Together Tutorial -- Part 11

This step is easy. The System window is a choice on the speedmenu for each class and diagram under version control.

Below isapicture of our System window. Notice the following:
« Fileswith black names are not under version control. Y ou can click off the button under the file listing on the far right far right (i,) to suppress listing them.
» Agent.java and Coach.java have read-only lock icons.
o FirstClassislisted in red, indicating that it has been modified.

x|
o 8 I 2 ol af* 5] ® = & Y g
Aol et Remove heckin CheckOut UnCheckCot pdate Hiztary Difference Details Lock UnLock Refresh
= <Project= Mame Size Madified Type VeS Status |
B = ?gn; inePD E’l Aaert java Jod Fribdar 30121210 EST 2001 File p to date =
irline -
@ (] DataManageme AirlinePD dfPackage 946 Tue Apr 101351224 EDT 20... File Unknosen
H] Userinterface D AirlinePD dfPackage wmf 32526 Tue 2pr 1015:14:16 EDT 20... File Unknowen
éi(:-:ual:h.java 221 Tue Apr 10151024 EDT 20.., File Ll to date
D Discard.dfSequence wmf 73394 Tue Apr 101003824 EDT 20... File Unknoseen
"[|-» FindRevenue dfSequen... 5123 Fri Mar 30 15:45:35 EST 2001 File Unknowen
D FindRevenue dfZequen... 5315 Tue Apr 10151416 EDT 20... File nknowen
FirstClass java 226 Tue Apr 10151218 EDT 20... File Locally modified
4 |§:;:5 :2:5:j| |] Fligght jawa 1171 Mon Apr 09 15:59:36 EDT 20...File Unknowen -
[#] Show dislog Ih%. m |®g, Qg
— Command propertie
[¥] Recursive in directories
[_] Keep checked out
Empty comment b=
| Close | | Help |

Step: Examine two items:
« thehistory of Coach.java
« the difference between Fir stClass.java when it was checked out and now

http://localhost/11versioncontrol.html (5 of 7) [5/3/2001 3:49:15 PM]

Together Tutorial -- Part 11

Each item in the Version Control System window has a speedmenu. The items correspond to active items on main menu. E out
Shown below are the History and the Difference window for FirstClass.java. The Difference window displays original version of T Remaove
FirstClass.java on the left and modified version on the right. (History windows show comments.) [Checkout
Update
Q History %
Cifferenc
E=| Detail=
Lock
i UnLock
@ Refresh
Histury :
FCE file: CoTogethers Ohinfwin32irepository fairlinefairlinePVFirstClass java,y
orking file: FirstClass java
head: 11 = : e e e
branch g4 C:" Together 5.0 myprojects airline’ AirlinePD' FirstClass.java EI
ocks: strict P i
| cess list revizion 1.1 9 a% local edition
Eyinbolic ng G =[5 7+
keyweord s - + e I : . i
otal revisio stereotype ing stereotype ing
description: 7 b 7 e
Ermpty come 8 public class FirstClass extends Ticket { 8 public class FirstClass extends Ticket {
-------------- g public double calcPrice(){ g public double calcPrice(){
revision 1.1 §y g J/ Write your code here 10 JF Write your code here
date; 2001/
11 return 0O;) 411 | return 499.0;
Empty com |
g Ll } -| 11 1
--- gdded lines --- changed lines --- deleted lines
| Close
4

Tipsand Tricks

» Diagram files, source code files, and the project file (.tpr) typically go under version control. Workspace settings files (.tws) do not.

« Becareful using the Remove option for version control. It deletesthefile.
http://localhost/11versioncontrol.html (6 of 7) [5/3/2001 3:49:15 PM]

Together Tutorial -- Part 11

| <= PREVIOUS | TOP4 | NEXT—> | START HOME |

Copyright © 2001 TogetherSoft Corporation. All rights reserved.
Last Revised: Tue, Apr 10, 2001

http://localhost/11versioncontrol.html (7 of 7) [5/3/2001 3:49:15 PM]

Together Tutorial -- Part 12
Together Tutoria
Part 12: Running and Debugging Java Projects

Inthisfina part of the Together Tutorial, you will learn how to use the Editor and the Message pane for compiling and debugging Java code. We have faithfully
used the airline project for the first eleven parts of the Together Tutorial. But we will abandon it here in favor of the richer CashSales project.

On Windows platforms, Together installs and uses javac.exe from Java2™ SDK version 1.3 as the default compiler. Unix users need to install the appropriate
Java2 SDK and put it into the search path. With al platforms, Together provides a complete IDE for Java devel opment.

Contents:
« Viewing the Message pane as a simple console window

¢ Setting breakpoints and animating the debugger

¢ Running under the debugger

o Setting watchpoints and changing program execution

e Tipsand Tricks

Viewing the Message pane as a ssmple console window

For afinal bit of fun with the airline project, you'll add a simple output statement to the Driver class. (Remember that one? It's in the User | nter face package.)

Step: Put this statement inside Driver.main().
System.out.printIn(* Goodbye Airline Project.");

Then compile the project.

Buttons for making (k) and building (&%) a project are on the Main T

toolbar and on Tools from the Main menu. ' |
. ‘ - | . |"HHr Make completed
Together will execute the default Java compiler and make utility, ! [#** Dutput directory: C:\TogetherS.0%outiclasses‘airline
showing the resultsin the Message pane. If there are errors or M
warnings, you can click on the appropriate line inside the Message o
pane and navigate directly to the offending code.
Y ou will seethe results of compiling the project on the Message L@mﬁép{\ Builder

pane.

[Step: Run the airline project. |

http://localhost/12debugtutor.html (1 of 7) [5/3/2001 3:49:18 PM]

Together Tutorial -- Part 12

There's arun button (/i) on the Main toolbar also.

When you run a Java project, Together asks for the
class with the main method. For this project, you
have no choice. The snapshot on the right shows
the pop-up windows from the run command.

The Message pane gives Together asimple
console window. The Message pane is the focus of
standard input and output of programs running
within Together.

Shown below is the resulting execution. The tab at
the right of the pane displays the class with the
main.

Notice that the M essage pane no longer has a
single tab. Y ou can close atab with the tab
speedmenu.

,.-'-.
Run arguments and parameters

Fun configuration:

||N|:|Narne - |

T

Clazs with 'main’

Frogram arguments:

Wi options:

Application [aa@mﬁ%m1

il Select main class
[Userinterface Driver

B

Eancel

!1 clazsies) found

[C:ZTogethers.0YvjdkYbinY javaw -classic -classpath CiZyTogetherS.O0houthiclasse
Foodbye Airline Project.

Llserlrrterfan:e.Driverj

Thiswraps up all of the Together Tutorial work on the airline project. Congratulations. Y ou've learned alot!

Setting breakpoints and animating the debugger

[Step: Open the CashSales project.

Opening a project ought to be easy. There are several options.

« UsetheFilelOpen Project command.

« If CashSales has been opened recently, use the File]Reopen command.
« From the Directory tab of the Explorer pane, click on CashSales.tpr in the CashSales folder.

Together warns you that it cannot open another project without closing the current one.

http://localhost/12debugtutor.html (2 of 7) [5/3/2001 3:49:18 PM]

Together Tutorial -- Part 12

[Step: Set abreakpoint at the last curly brace in the constructor for CashSaleDetail (from the problem_domain package). |

Y ou need to pull up the code in the Together editor. Having trouble getting
there? Use the Overview tab in the Explorer to steer CashSaleDetail to the
middle of the Diagram pane... and go from there.

Once you find the line in the editor, click the cursor at the line on the Editor's
left margin. Thiswill highlight the linein red and put a breakpoint icon at the

& public Cashfaleletail (ProductDesc prod) §
= product = prod:
i gry = 1;

[» o

left margin.

Mouse clicking on the left margin toggles adding and removing the —LCaﬂhSaleDetail.java |
breakpoint.
The Debugger tab of the Message pane displays all of the breakpoints. (If the tab is not showing, select Tools|Run/Debug|Run|Show debugger tab from the
Main menu.)
D\ﬁ 0 D" _.- ‘|/::_ Bl | user_interfan::e.CashSalesAppﬂ
Y =2 H E e
G |F b | Type | Location | Enabled | Stop |Log [a.c..
ke b L-;i;.&lluncaugkﬁex.... L [¥] i [v] @ 1
@ Line =unverified= [Class 'problem_domain CashSaleDetsil <line 49= [#] W [1)
A= o=
[Messages | 28 Builder | st RunDebug |

[Step: Set the debugger to show the connection between diagram and code while it is running a project.

Go to the Debug tab on the Project or Default Options e

Yalue

(available on Options from the Main menu). Check Display
class'/member in class diagram on.

— Run configurations (arguments, aptions) oo

|| R

Checking on this option has the effect of animating the ;

debugger. When you run the project in the animated debugger, E} i Bt s R
Together will scroll the class diagram to highlight the method G Aftach o remote process oo
that you are stepping through. E Arnimate class disgram during debugging -

Showy variable value as toaltipg

L

http://localhost/12debugtutor.html (3 of 7) [5/3/2001 3:49:18 PM]

Together Tutorial -- Part 12
Running under the debugger

Step: Run the CashSales application under the debugger. At the breakpoint, examine the current stack frame and the value of
CashSaleDetail.

The Main toolbar has a Run in Debugger button ([}?‘.'E). When debugging execution begins, the Debugger tab expands to show detailed runtime information. (Be
patient for the application to get going. Y ou'll need to press the "Scan" button to get to the breakpoint.)

The snapshot below was taken while execution of CashSales was suspended at the breakpoint. The left side of the Debugger pane shows atoolbar, with buttons
to guide execution of the program, examine frames and threads, and set various kinds of breakpoints.

The Frame tab (at the front in the snapshot) shows the contents of the current stack frame when it hits the breakpoint. At that point, you can expand this to see
CashSaleDetail.qty.

D’;& user_interfan:e.CashSalesAppﬁ

o O
13 vy | = - |
21 LT: E’I wha =init=1: problem_domain.CashSaleDetail, CashSaleDetai java, 43 -
L Elemerit Type Yalle
L . _ _ "
= E thi= problem... [problem_domain . CashSaleDetaili@3ad | =
; g +id = =i
== prablem_domain Cashsalebetail
E procuct problem... {problem_daomain ProductDesci@sas ke
& oty irt 1 —
; P —
& LIOM firt o L\x? -

A D?“_'!é RunDekug

Clicking the method name at the top of the Frame tab shows the runtime stack for this thread.

http://localhost/12debugtutor.html (4 of 7) [5/3/2001 3:49:18 PM]

Together Tutorial -- Part 12

= 2 33’@’} ﬁpﬂ %-,; Eﬂlﬁﬁseﬁﬂﬁfm‘m@ﬁ wmﬂﬁhﬂﬁ]{@ﬁl@tﬁ“l D;& user_interfac:e.CashSalesAppj
Lo Oicwsk | o Eegs [EiSmomm] forem |
i‘l- H b |-=-=$:in'rt:-(.j: problem_domain CashSaleDetsil, CashEaleDetail java, 49
T =6 =int=() : problem_domain CashSaleDetail, CazhSaleDetail java, 43 =
U Bl o6 scan() : user interface POSFrame, POSFrame java, 614 S
+1 4+ 8 +4F

F
F
F

=6 ButtonScan_actionPerformed) : u=er_interface POSFrame, POSFrame jsva, 740 _,_
kg actionPerformed() : user_interface POSFrame$s, POSFrame java, 242
why firedctionPerforme() ; javax swing. AbstractButton, AbstractButton jave, 1450 _
ki actionPerformed) : javas swing. AbstractButtonForwardActionEvents, AbstractButton java, 13504 i
- Lty firetctionPerformed() ; javax swing DefautButtonidodel, DefautButtoniodel java, 375
U_E;—hl:-m‘gﬁa'@ﬂ :.I) setF‘res:aed[j ; javax.swill'lg.DefaurtEluﬁDnMDdel, DefautButtonhodel java, 230 -

The left margin of the Editor changes when a project is running under debug mode. Small diamonds (=) mark executable lines. And the breakpoint icon changes
from not running (g) to running (&).

Setting watchpoints and changing program execution

[Step: Set awatchpoint on CashSaleDetail.qty. Then change the value of gty to 47. |
Y ou can set a watchpoint when execution is suspended at a breakpoint. Click the watchpoint icon (2%) on _ , x|
the leftmost panel of the Message pane.
You'l get adialog box similar to the one on the right. Enter the expression as shown. Expression: |ty |
Cescription: | |

] 4 %" Cancel

Y ou can set the value of awatchpoint expression with the pull-down menu on the watchpoint line. First, left click the lineto highlight it in blue. Then right click
to get the menu. For this exercise, select "Change Vaue."

A

Y ou can set the value of gty in the resulting dialog box.

http://localhost/12debugtutor.html (5 of 7) [5/3/2001 3:49:18 PM]

Together Tutorial -- Part 12

D\fg user_interfan:e.CashSales.ﬂ-.ppj

F
»
F

5 Change Yalue...

Shove Hex Value

H_E_‘l._r-negs’agsg' 'L'._:Eu:il.ﬂér']: i Remove Ystch

Change Watch Expression...
Change Watch Description...

o0 [(%5 Threas | E5) Classes | greg Mantars | 0o Watches (] Evaluate |

oD w | Heensde [g Breskpoits | EjSkpcesses | [oFrame |
1 5 4 Yariahle/Expression | Type | Yallehezzage |Descriptin:un

=3 |_=F | ety ik 4 l=unnamec=

By % & o, Create attribute Watch... '

+ 1 4+ B +4 : L—L HISE

Change value

fir, Add wWiatch

Remove Al

Enter a nevwy int:;

47

Cancel

=

Click the continue button ([*) on the Message pane to get going again.

The snapshot to the right shows the result on our user interface. The result will vary according to

the item scanned.

| Mihite Popcorn

Item

Blame

ILInit

ity Price

YWhite Popcarn

F1.29

47 |F6E0.A3

Tipsand Tricks

« Don't use the make button on a project that is up to date or that has nothing to build. Y ou can force a make by choosing Tools|Rebuild Project from the

Main menu.

« You can remove a breakpoint viaits speedmenu in the Debugger tab. Select the breakpoint from the Debugger list and right click. There's a"Remove

breakpoint” option. Alternatively, you can select the breakpoint and hit Delete.
« When execution is suspended at a method call, clicking on the "Step into" button (Y43) will not step into the method when Smart Step ison. (The

Debugger tab has a" Skip classes' tab that lists the classes that the debugger won't enter. By default, these are classes in the standard Java class libraries.

Y ou can add more classes to the list with the " Skip classes" speedmenu. The tab has a check box that allows you to step into the class, assuming its

source code is available.)

o C++ programmers can compile their code within Together. But first, they need to modify the compiler specification in the Together configuration options

to point to their C++ compiler.

http://localhost/12debugtutor.html (6 of 7) [5/3/2001 3:49:18 PM]

Together Tutorial -- Part 12

| <— PREVIOUS | TOP4 | START HOME]

Copyright © 2001 TogetherSoft Corporation. All rights reserved.
Last Revised: Thu, Apr 12, 2001

http://localhost/12debugtutor.html (7 of 7) [5/3/2001 3:49:18 PM]

	localhost
	Together Practical Guide
	Together Quick Tour -- Part 1
	Together Quick Tour -- Part 2
	Together Quick Tour -- Part 3
	Together Quick Tour -- Part 4
	Together Tutorial -- Part 1
	Together Tutorial -- Part 2
	Together Tutorial -- Part 3
	Together Tutorial -- Part 4
	Together Tutorial -- Part 5
	Together Tutorial -- Part 6
	Together Tutorial -- Part 7
	Together Tutorial -- Part 8
	Together Tutorial -- Part 9
	Together Tutorial -- Part 10
	Together Tutorial -- Part 11
	Together Tutorial -- Part 12

